The relational nature of rational numbers

被引:2
作者
Brown, Bruce [1 ]
机构
[1] Rhodes Univ, Dept Educ, Grahamstown, South Africa
关键词
D O I
10.4102/pythagoras.v36i1.273
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
It is commonly accepted that the knowledge and learning of rational numbers is more complex than that of the whole number field. This complexity includes the broader range of application of rational numbers, the increased level of technical complexity in the mathematical structure and symbol systems of this field and the more complex nature of many conceptual properties of the rational number field. Research on rational number learning is divided as to whether children's difficulties in learning rational numbers arise only from the increased complexity or also include elements of conceptual change. This article argues for a fundamental conceptual difference between whole and rational numbers. It develops the position that rational numbers are fundamentally relational in nature and that the move from absolute counts to relative comparisons leads to a further level of abstraction in our understanding of number and quantity. The argument is based on a number of qualitative, in-depth research projects with children and adults. These research projects indicated the importance of such a relational understanding in both the learning and teaching of rational numbers, as well as in adult representations of rational numbers on the number line. Acknowledgement of such a conceptual change could have important consequences for the teaching and learning of rational numbers.
引用
收藏
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 2007, 2 HDB RES MATH TEACH
[2]  
Behr M. J., 1983, ACQUISITION MATH CON, P91
[3]  
Gelman R., 1998, COGNITION PERCEPTION, V2, P575
[4]  
Kieren T. E., 1976, NUMBER MEASUREMENT P, P101
[5]  
Kieren TE., 1988, NUMBER CONCEPTS OPER, P162
[6]  
Kilpatrick J., 2001, ADDING IT HELPING CH
[7]   Unit fractions in the context of proportionality: supporting students' reasoning about the inverse order relationship [J].
Luis Cortina, Jose ;
Visnovska, Jana ;
Zuniga, Claudia .
MATHEMATICS EDUCATION RESEARCH JOURNAL, 2014, 26 (01) :79-99
[8]   Modeling the developmental trajectories of rational number concept(s) [J].
McMullen, Jake ;
Laakkonen, Eero ;
Hannula-Sormunen, Minna ;
Lehtinen, Erno .
LEARNING AND INSTRUCTION, 2015, 37 :14-20
[9]   Spontaneous Focusing on Quantitative Relations in the Development of Children's Fraction Knowledge [J].
McMullen, Jake ;
Hannula-Sormunen, Minna M. ;
Lehtinen, Erno .
COGNITION AND INSTRUCTION, 2014, 32 (02) :198-218
[10]   Young children's recognition of quantitative relations in mathematically unspecified settings [J].
McMullen, Jake A. ;
Hannula-Sormunen, Minna M. ;
Lehtinen, Erno .
JOURNAL OF MATHEMATICAL BEHAVIOR, 2013, 32 (03) :450-460