BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS

被引:2869
作者
FERGUSON, TS [1 ]
机构
[1] UNIV CALIF,DEPT MATH,LOS ANGELES,CA 90024
关键词
D O I
10.1214/aos/1176342360
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:209 / 230
页数:22
相关论文
共 11 条
[1]  
ANTONIAK C, 1969, THESIS U CALIFORNIA
[2]  
DUBINS LE, 1966, 5 P BERK S MATH STAT, V2
[3]   ASYMPTOTIC-BEHAVIOR OF BAYES ESTIMATES [J].
FABIUS, J .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (02) :846-&
[4]   REPRESENTATION OF INDEPENDENT INCREMENT PROCESSES WITHOUT GAUSSIAN COMPONENTS [J].
FERGUSON, TS ;
KLASS, MJ .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (05) :1634-&
[5]   INVARIANTS UNDER MIXING WHICH GENERALIZE DE FINETTIS THEOREM - CONTINUOUS-TIME PARAMETER [J].
FREEDMAN, DA .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (04) :1194-&
[6]  
Gnedenko B. V., 1949, LIMIT DISTRIBUTIONS
[7]  
Good I.J., 1965, ESTIMATION PROBABILI
[8]  
KOLMOGOROV AN, 1933, FOUNDATIONS THEORY P
[9]  
Kraft C. H., 1964, J APPL PROBAB, V1, P385
[10]   BAYESIAN BIOASSAY [J].
KRAFT, CH ;
VANEEDEN, C .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (02) :886-&