LINEAR ALGORITHM FOR OPTIMAL PATH COVER PROBLEM ON INTERVAL-GRAPHS

被引:69
作者
ARIKATI, SR [1 ]
RANGAN, CP [1 ]
机构
[1] INDIAN INST TECHNOL, DEPT COMP SCI & ENGN, MADRAS 600036, TAMIL NADU, INDIA
关键词
Data structures; design of algorithms; interval graphs; path covering;
D O I
10.1016/0020-0190(90)90064-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A path cover of a graph G is a set of vertex-disjoint paths that cover all the vertices of G. An optimal path cover of G is a path cover of minimum cardinality. This problem is known to be NP-complete for arbitrary graphs. We present a linear algorithm for this problem on interval graphs. Given the adjacency lists of an interval graph with n vertices and m edges, our algorithm runs in O(m+n) time. © 1990.
引用
收藏
页码:149 / 153
页数:5
相关论文
共 13 条
[1]  
Boesch F. T., 1974, GRAPH COMBINATOR, V406, P201
[2]   MINIMUM NODE DISJOINT PATH COVERING FOR CIRCULAR-ARC GRAPHS [J].
BONUCCELLI, MA ;
BOVET, DP .
INFORMATION PROCESSING LETTERS, 1979, 8 (04) :159-161
[3]   TESTING FOR CONSECUTIVE ONES PROPERTY, INTERVAL GRAPHS, AND GRAPH PLANARITY USING PQ-TREE ALGORITHMS [J].
BOOTH, KS ;
LUEKER, GS .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1976, 13 (03) :335-379
[4]  
Garey M.R., 1979, COMPUTERS INTRACTABI, V174
[5]  
Golumbic M. C., 1980, ALGORITHMIC GRAPH TH
[6]   ADVANCES ON HAMILTONIAN COMPLETION PROBLEM [J].
GOODMAN, SE ;
HEDETNIEMI, ST .
JOURNAL OF THE ACM, 1975, 22 (03) :352-360
[7]  
GOODMAN SE, 1974, GRAPH COMBINATOR, P262
[8]   FINDING HAMILTONIAN CIRCUITS IN INTERVAL-GRAPHS [J].
KEIL, JM .
INFORMATION PROCESSING LETTERS, 1985, 20 (04) :201-206
[9]  
MANACHER GK, IN PRESS INFORM PROC
[10]  
MORAN S, IN PRESS THEORET COM