A Duality Approach for a Class of Semivectorial Bilevel Programming Problems

被引:3
作者
Aboussoror, Abdelmalek [1 ]
Adly, Samir [2 ]
Saissi, Fatima Ezzahra [1 ,2 ]
机构
[1] Univ Cadi Ayyad, Fac Polydisciplinaire Safi, Lab LMC, BP 4162, Sidi Bouzid, Safi, Morocco
[2] Univ Limoges, Fac Sci & Tech, Lab XLIM, UMR 6172,CNRS, 123 Ave Albert Thomas, F-87060 Limoges, France
关键词
Bilevel programming; Vectorial programming; Convex analysis; Duality; Stability;
D O I
10.1007/s10013-017-0268-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a duality approach using conjugacy for a semivectorial bilevel programming problem (S) where the upper and lower levels are vectorial and scalar respectively. This approach uses the Fenchel-Lagrange duality and is given via a regularization of problem (S) and the operation of scalarization. Then, using this approach, we provide necessary optimality conditions for a class of properly efficient solutions of (S). Finally, sufficient optimality conditions are given for (S) regardless of the duality approach. Examples are given for illustration.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 15 条
[1]  
Aboussoror A, 2017, PAC J OPTIM, V13, P123
[2]  
Aze D, 1997, MATHEMATIQUES 2EME C
[3]   Duality for multiobjective optimization problems with convex objective functions and DC constraints [J].
Bot, RI ;
Wanka, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 315 (02) :526-543
[4]   Proximal point algorithm controlled by a slowly vanishing term: Applications to hierarchical minimization [J].
Cabot, A .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (02) :555-572
[5]   Optimality Conditions for a Simple Convex Bilevel Programming Problem [J].
Dempe, S. ;
Dinh, N. ;
Dutta, J. .
VARIATIONAL ANALYSIS AND GENERALIZED DIFFERENTIATION IN OPTIMIZATION AND CONTROL: IN HONOR OF BORIS S. MORDUKHOVICH, 2010, 47 :149-+
[6]  
Dhara A, 2012, OPTIMALITY CONDITIONS IN CONVEX OPTIMIZATION: A FINITE-DIMENSIONAL VIEW, P1
[7]   PROPER EFFICIENCY AND THEORY OF VECTOR MAXIMIZATION [J].
GEOFFRION, AM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 22 (03) :618-+
[8]  
Lemarchal C., 1993, CONVEX ANAL MINIMIZA, VI
[9]  
Lemarchal C., 1993, CONVEX ANAL MINIMIZA, VII
[10]  
Rockafellar R.T., 1970, CONVEX ANAL