EQUILIBRIUM MAPS BETWEEN METRIC-SPACES

被引:135
作者
JOST, J [1 ]
机构
[1] RUHR UNIV BOCHUM,FAK MATH,D-44780 BOCHUM,GERMANY
关键词
D O I
10.1007/BF01191341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of harmonic mappings with values in possibly singular and not necessarily locally compact complete metric length spaces of nonpositive curvature in the sense of Alexandrov. As a technical tool, we show that any bounded sequence in such a space has a subsequence whose mean values converge. We also give a general definition of harmonic maps between metric spaces based on mean value properties and GAMMA-convergence.
引用
收藏
页码:173 / 204
页数:32
相关论文
共 26 条
[1]  
Alber S.I., 1964, SOV MATH DOKL, V5, P700
[2]  
Alber SI., 1967, SOV MATH DOKL, V9, P6
[3]  
Alexander S., 1990, ENSEIGN MATH, V36, P309
[4]  
BETHUEL F, GINZBURG LANDAU VORT
[5]   DIRICHLET SPACES [J].
BEURLING, A ;
DENY, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1959, 45 (02) :208-215
[6]   Partial differential equations of mathematical physics [J].
Courant, R ;
Friedrichs, K ;
Lewy, H .
MATHEMATISCHE ANNALEN, 1928, 100 :32-74
[7]  
Dal Maso G., 1993, NONLINEAR DIFFERENTI
[8]   HARMONIC-MAPPINGS AND DISK BUNDLES OVER COMPACT KAHLER-MANIFOLDS [J].
DIEDERICH, K ;
OHSAWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1985, 21 (04) :819-833
[9]  
DONALDSON SK, 1987, P LOND MATH SOC, V55, P127
[10]  
ELLS J, 1964, AM J MATH, V85, P109