SEGMENTATION OF 3-DIMENSIONAL SURFACES

被引:7
|
作者
MUKHERJEE, J [1 ]
CHATTERJI, BN [1 ]
DAS, PP [1 ]
机构
[1] INDIAN INST TECHNOL,DEPT COMP SCI & ENGN,KHARAGPUR 721302,W BENGAL,INDIA
关键词
3-D images; Digital Neighborhood Plane; region growing; scene analysis; Segmentation;
D O I
10.1016/0167-8655(90)90008-P
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In 3-D scene analysis usually the 3-D surfaces are segmented into planar and quadratic surface regions. In this paper the concept of a digital neighborhood plane has been introduced for the segmentation of digital 3-D surfaces into planar regions. The algorithm is simple and is illustrated with the help of several examples. © 1990.
引用
收藏
页码:215 / 223
页数:9
相关论文
共 50 条
  • [21] Rotational surfaces in a 3-dimensional normed space
    Sakaki, Makoto
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (01): : 23 - 41
  • [22] The Extremal Surfaces in the 3-dimensional Minkowski Space
    谷超豪
    Acta Mathematica Sinica,English Series, 1985, (02) : 173 - 180
  • [23] Representation of surfaces in 3-dimensional lightlike cone
    Liu, Huili
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (04) : 737 - 748
  • [24] On biconservative surfaces in 3-dimensional space forms
    Fetcu, Dorel
    Nistor, Simona
    Oniciuc, Cezar
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (05) : 1027 - 1045
  • [25] 3-DIMENSIONAL SURFACES FOR HUMAN MUSCLE KINETICS
    MARSHALL, RN
    MAZUR, SM
    TAYLOR, NAS
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 1990, 61 (3-4) : 263 - 270
  • [26] Polyharmonic surfaces in 3-dimensional homogeneous spaces
    S.  Montaldo
    C.  Oniciuc
    A.  Ratto
    manuscripta mathematica, 2024, 174 : 31 - 58
  • [27] Rotational surfaces in a 3-dimensional normed space
    Makoto Sakaki
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2024, 65 : 23 - 41
  • [28] INTERPRETING LINE DRAWINGS AS 3-DIMENSIONAL SURFACES
    BARROW, HG
    TENENBAUM, JM
    ARTIFICIAL INTELLIGENCE, 1981, 17 (1-3) : 75 - 116
  • [29] INCOMPRESSIBLE SURFACES AND THE TOPOLOGY OF 3-DIMENSIONAL MANIFOLDS
    AITCHISON, IR
    RUBINSTEIN, JH
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1993, 55 : 1 - 22
  • [30] 3-dimensional machining of optical quality surfaces
    Cerniway, MA
    Dow, TA
    PROCEEDINGS OF THE FIFTEENTH ANNUAL MEETING OF THE AMERICAN SOCIETY FOR PRECISION ENGINEERING, 2000, : 42 - 45