Text Mining in Cancer Gene and Pathway Prioritization

被引:18
作者
Luo, Yuan [1 ]
Riedlinger, Gregory [2 ]
Szolovits, Peter [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02114 USA
关键词
gene prioritization; text mining; cancer omics; pathway prioritization; machine learning;
D O I
10.4137/CIN.S13874
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 125 条
[111]   A text-mining analysis of the human phenome [J].
van Driel, MA ;
Bruggeman, J ;
Vriend, G ;
Brunner, HG ;
Leunissen, JA .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2006, 14 (05) :535-542
[112]   A new web-based data mining tool for the identification of candidate genes for human genetic disorders [J].
van Driel, MA ;
Cuelenaere, K ;
Kemmeren, PPCW ;
Leunissen, JAM ;
Brunner, HG .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2003, 11 (01) :57-63
[113]   Associating Genes and Protein Complexes with Disease via Network Propagation [J].
Vanunu, Oron ;
Magger, Oded ;
Ruppin, Eytan ;
Shlomi, Tomer ;
Sharan, Roded .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (01)
[114]   Five Years of GWAS Discovery [J].
Visscher, Peter M. ;
Brown, Matthew A. ;
McCarthy, Mark I. ;
Yang, Jian .
AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 90 (01) :7-24
[115]   The NHGRI GWAS Catalog, a curated resource of SNP-trait associations [J].
Welter, Danielle ;
MacArthur, Jacqueline ;
Morales, Joannella ;
Burdett, Tony ;
Hall, Peggy ;
Junkins, Heather ;
Klemm, Alan ;
Flicek, Paul ;
Manolio, Teri ;
Hindorff, Lucia ;
Parkinson, Helen .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D1001-D1006
[116]   Database resources of the National Center for Biotechnology Information [J].
Wheeler, David L. ;
Barrett, Tanya ;
Benson, Dennis A. ;
Bryant, Stephen H. ;
Canese, Kathi ;
Chetvernin, Vyacheslav ;
Church, Deanna M. ;
DiCuccio, Michael ;
Edgar, Ron ;
Federhen, Scott ;
Geer, Lewis Y. ;
Kapustin, Yuri ;
Khovayko, Oleg ;
Landsman, David ;
Lipman, David J. ;
Madden, Thomas L. ;
Maglott, Donna R. ;
Ostell, James ;
Miller, Vadim ;
Pruitt, Kim D. ;
Schuler, Gregory D. ;
Sequeira, Edwin ;
Sherry, Steven T. ;
Sirotkin, Karl ;
Souvorov, Alexandre ;
Starchenko, Grigory ;
Tatusov, Roman L. ;
Tatusova, Tatiana A. ;
Wagner, Lukas ;
Yaschenko, Eugene .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D5-D12
[117]   DrugBank:: a comprehensive resource for in silico drug discovery and exploration [J].
Wishart, David S. ;
Knox, Craig ;
Guo, An Chi ;
Shrivastava, Savita ;
Hassanali, Murtaza ;
Stothard, Paul ;
Chang, Zhan ;
Woolsey, Jennifer .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D668-D672
[118]   Network-based global inference of human disease genes [J].
Wu, Xuebing ;
Jiang, Rui ;
Zhang, Michael Q. ;
Li, Shao .
MOLECULAR SYSTEMS BIOLOGY, 2008, 4 (1)
[119]   PGMapper: a web-based tool linking phenotype to genes [J].
Xiong, Qing ;
Qiu, Yuhui ;
Gu, Weikuan .
BIOINFORMATICS, 2008, 24 (07) :1011-1013
[120]   Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types [J].
Yang, Yang ;
Han, Leng ;
Yuan, Yuan ;
Li, Jun ;
Hei, Nainan ;
Liang, Han .
NATURE COMMUNICATIONS, 2014, 5