NONCLASSICAL SYMMETRIES AND BACKLUND-TRANSFORMATIONS

被引:30
作者
NUCCI, MC
机构
[1] Dipartimento di Matematica, Universitá di Perugia
关键词
D O I
10.1006/jmaa.1993.1308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show how to obtain well-known Bäcklund transformations of several equations by applying the nonclassical symmetries method. In particular, we derive the Bäcklund transformation between the modified Korteweg-de Vries and the Korteweg-de Vries equations, the Bäcklund transformation between the Calogero and the third-order linear equations, the auto-Bäcklund transformations of the potential Korteweg-de Vries, the potential modified Korteweg-de Vries equation, and the Burgers equations. As a consequence, the n-solitons solution of the Korteweg-de Vries equation can be obtained by the nonclassical symmetries method. © 1993 Academic Press. Inc. All rights reserved.
引用
收藏
页码:294 / 300
页数:7
相关论文
共 20 条
[1]  
AMES WF, 1972, NONLINEAR PARTIAL DI, V2
[2]  
Bluman G., 1989, SYMMETRIES DIFFERENT
[3]  
Bluman G. W., 1974, APPL MATH SCI, V13
[4]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[5]   THE EVOLUTION PARTIAL-DIFFERENTIAL EQUATION UT=UXXX+3(UXXU2+3U2XU)+3UXU4 [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (03) :538-555
[6]   THE COMPUTER CALCULATION OF LIE POINT SYMMETRIES OF LARGE SYSTEMS OF DIFFERENTIAL-EQUATIONS [J].
CHAMPAGNE, B ;
HEREMAN, W ;
WINTERNITZ, P .
COMPUTER PHYSICS COMMUNICATIONS, 1991, 66 (2-3) :319-340
[7]  
CHAMPAGNE B, 1985, CRM1278 CTR RECH MAT
[8]   NONCLASSICAL SYMMETRY REDUCTIONS FOR THE KADOMTSEV-PETVIASHVILI EQUATION [J].
CLARKSON, PA ;
WINTERNITZ, P .
PHYSICA D, 1991, 49 (03) :257-272
[9]   NON-CLASSICAL SYMMETRY REDUCTION - EXAMPLE OF THE BOUSSINESQ EQUATION [J].
LEVI, D ;
WINTERNITZ, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (15) :2915-2924
[10]  
Lie S, 1881, ARCH MATH, V2, P473, DOI DOI 10.1016/0167-2789(90)90123-7