STABILITY OF FINITE-DIFFERENCE SCHEMES FOR PROBLEM OF ELASTIC WAVE-PROPAGATION IN A QUARTER PLANE

被引:27
作者
ILAN, A
机构
关键词
D O I
10.1016/0021-9991(78)90141-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:389 / 403
页数:15
相关论文
共 50 条
[31]   SUPERCONVERGENCE FOR A MIXED FINITE-ELEMENT METHOD FOR ELASTIC WAVE-PROPAGATION IN A PLANE DOMAIN [J].
DOUGLAS, J ;
GUPTA, CP .
NUMERISCHE MATHEMATIK, 1986, 49 (2-3) :189-202
[32]   WAVE-PROPAGATION IN HETEROGENEOUS, POROUS-MEDIA - A VELOCITY-STRESS, FINITE-DIFFERENCE METHOD [J].
DAI, N ;
VAFIDIS, A ;
KANASEWICH, ER .
GEOPHYSICS, 1995, 60 (02) :327-340
[33]   STABILITY AND ACCURACY OF A FINITE-DIFFERENCE SCHEME FOR ELASTIC WAVE-EQUATION MODELING [J].
NICOLETIS, L ;
BAMBERGER, A ;
DAUDIER, S ;
GOSSELIN, O ;
LAILLY, P .
GEOPHYSICS, 1985, 50 (02) :357-357
[34]   THE CONVERGENCE OF FINITE-DIFFERENCE SCHEMES FOR THE WAVE-EQUATION [J].
JOVANOVIC, BS ;
IVANOVIC, LD ;
SULI, EE .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (05) :T308-T309
[35]   SOME STABILITY INEQUALITIES FOR COMPACT FINITE-DIFFERENCE SCHEMES [J].
GRIGORIEFF, RD .
MATHEMATISCHE NACHRICHTEN, 1988, 135 :93-101
[36]   EXPLICIT FINITE-DIFFERENCE SCHEMES FOR WAVE FIELD CONTINUATION [J].
ROCCA, F ;
SGUAZZERO, P .
GEOPHYSICS, 1980, 45 (04) :515-515
[37]   STABILITY OF ONE CLASS OF IMPLICIT FINITE-DIFFERENCE SCHEMES [J].
KUZNETSOV, NN ;
VOLOSHIN, SA .
DOKLADY AKADEMII NAUK SSSR, 1978, 242 (03) :525-528
[38]   FINITE-ELEMENT METHOD FOR ELASTIC WAVE-PROPAGATION [J].
SERON, FJ ;
SANZ, FJ ;
KINDELAN, M ;
BADAL, JI .
COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1990, 6 (05) :359-368
[39]   Finite-difference modelling of two-dimensional elastic wave propagation in cracked media [J].
van Antwerpen, VA ;
Mulder, WA ;
Herman, GC .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2002, 149 (01) :169-178
[40]   Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach [J].
Wang, TL ;
Tang, XM .
GEOPHYSICS, 2003, 68 (05) :1749-1755