User-Adaptable Hand Pose Estimation Technique for Human-Robot Interaction

被引:1
|
作者
Causo, Albert [1 ]
Ueda, Etsuko [3 ]
Takemura, Kentaro [2 ]
Matsumoto, Yoshio [4 ]
Takamatsu, Jun [2 ]
Ogasawara, Tsukasa [2 ]
机构
[1] Nara Inst Sci & Technol NAIST, Robot Lab, Dept Informat Sci, 8916-5 Takayama Cho, Ikoma City, Nara 6300192, Japan
[2] Nara Inst Sci & Technol NAIST, Ikoma City, Nara 6300192, Japan
[3] Nara Sangyo Univ, Fac Informat, Sango, Nara 6368503, Japan
[4] Natl Inst Adv Ind Sci & Technol, Intelligent Syst Inst, Tsukuba, Ibaraki 3058568, Japan
关键词
human-robot interaction; hand model calibration; vision-based hand pose estimation;
D O I
10.20965/jrm.2009.p0739
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Hand pose estimation using a multi-camera system allows natural non-contact interfacing unlike when using bulky data gloves. To enable any user to use the system regardless of gender or physical differences such as hand size, we propose hand model individualization using only multiple cameras. From the calibration motion, our method estimates the finger link lengths as well as the hand shape by minimizing the gap between the hand model and observation. We confirmed the feasibility of our proposal by comparing 1) actual and estimated link lengths and 2) hand pose estimation results using our calibrated hand model, a prior hand model and data obtained from data glove measurements.
引用
收藏
页码:739 / 748
页数:10
相关论文
共 50 条
  • [31] Detecting and tracking of 3D face pose for human-robot interaction
    Dornaika, Fadi
    Raducanu, Bogdan
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 1716 - +
  • [32] Hand posture recognition in gesture-based human-robot interaction
    Yin, Xiaoming
    Zhu, Xing
    ICIEA 2006: 1ST IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-3, PROCEEDINGS, 2006, : 397 - 402
  • [33] Hand posture recognition in gesture-based human-robot interaction
    Yin, Xiaoming
    Zhu, Xing
    2006 1ST IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-3, 2006, : 835 - +
  • [34] How the personality and memory of a robot can influence user modeling in Human-Robot Interaction
    Matcovich, Benedetta
    Gena, Cristina
    Vernero, Fabiana
    ADJUNCT PROCEEDINGS OF THE 32ND ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, UMAP 2024, 2024, : 136 - 141
  • [35] Participatory Design and End-User Programming for Human-Robot Interaction
    Senft, Emmanuel
    Porfirio, David
    Winkle, Katie
    PROCEEDINGS OF THE 2022 17TH ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI '22), 2022, : 1290 - 1292
  • [36] Neural Control for Human-Robot Interaction with Human Motion Intention Estimation
    Peng, Guangzhu
    Yang, Chenguang
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (12) : 16317 - 16326
  • [37] Accelerometer-based Hand Gesture Recognition for Human-Robot Interaction
    Anderez, Dario Ortega
    Dos Santos, Luis Pedro
    Lotfi, Ahmad
    Yahaya, Salisu Wada
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1402 - 1406
  • [38] A Nonlinear Modeling Framework for Force Estimation in Human-Robot Interaction
    Scibilia, Adriano
    Pedrocchi, Nicola
    Fortuna, Luigi
    IEEE ACCESS, 2024, 12 : 97257 - 97268
  • [39] Impact of trajectory profiles on user stress in close human-robot interaction
    Kuehnlenz, Barbara
    Erhart, Maximilian
    Kainert, Marcel
    Wang, Zhi-Qiao
    Wilm, Julian
    Kuehnlenz, Kolja
    AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (06) : 483 - 491
  • [40] On Interaction Quality in Human-Robot Interaction
    Bensch, Suna
    Jevtic, Aleksandar
    Hellstrom, Thomas
    ICAART: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2017, : 182 - 189