User-Adaptable Hand Pose Estimation Technique for Human-Robot Interaction

被引:1
|
作者
Causo, Albert [1 ]
Ueda, Etsuko [3 ]
Takemura, Kentaro [2 ]
Matsumoto, Yoshio [4 ]
Takamatsu, Jun [2 ]
Ogasawara, Tsukasa [2 ]
机构
[1] Nara Inst Sci & Technol NAIST, Robot Lab, Dept Informat Sci, 8916-5 Takayama Cho, Ikoma City, Nara 6300192, Japan
[2] Nara Inst Sci & Technol NAIST, Ikoma City, Nara 6300192, Japan
[3] Nara Sangyo Univ, Fac Informat, Sango, Nara 6368503, Japan
[4] Natl Inst Adv Ind Sci & Technol, Intelligent Syst Inst, Tsukuba, Ibaraki 3058568, Japan
关键词
human-robot interaction; hand model calibration; vision-based hand pose estimation;
D O I
10.20965/jrm.2009.p0739
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Hand pose estimation using a multi-camera system allows natural non-contact interfacing unlike when using bulky data gloves. To enable any user to use the system regardless of gender or physical differences such as hand size, we propose hand model individualization using only multiple cameras. From the calibration motion, our method estimates the finger link lengths as well as the hand shape by minimizing the gap between the hand model and observation. We confirmed the feasibility of our proposal by comparing 1) actual and estimated link lengths and 2) hand pose estimation results using our calibrated hand model, a prior hand model and data obtained from data glove measurements.
引用
收藏
页码:739 / 748
页数:10
相关论文
共 50 条
  • [1] Multi-View Human Pose Estimation in Human-Robot Interaction
    Xu, Chengjun
    Yu, Xinyi
    Wang, Zhengan
    Ou, Linlin
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 4769 - 4775
  • [2] Dual-Hand Detection for Human-Robot Interaction by a Parallel Network Based on Hand Detection and Body Pose Estimation
    Gao, Qing
    Liu, Jinguo
    Ju, Zhaojie
    Zhang, Xin
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (12) : 9663 - 9672
  • [3] A Socially Adaptable Framework for Human-Robot Interaction
    Tanevska, Ana
    Rea, Francesco
    Sandini, Giulio
    Canamero, Lola
    Sciutti, Alessandra
    FRONTIERS IN ROBOTICS AND AI, 2020, 7
  • [4] Human-robot Interaction Method Combining Human Pose Estimation and Motion Intention Recognition
    Cheng, Yalin
    Yi, Pengfei
    Liu, Rui
    Dong, Jing
    Zhou, Dongsheng
    Zhang, Qiang
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 958 - 963
  • [5] Pose Estimation and Collision Detection in Human-robot Coexistence
    Huang Y.
    Wang Z.
    Zhang X.
    Wu Y.
    Jiqiren/Robot, 2022, 44 (03): : 281 - 290
  • [6] Risk Assessment and Prediction in Human-Robot Interaction Through Assertion Mining and Pose Estimation
    Boldo, Michele
    Bombieri, Nicola
    De Marchi, Mirco
    Geretti, Luca
    Germiniani, Samuele
    Pravadelli, Graziano
    2022 23RD IEEE LATIN-AMERICAN TEST SYMPOSIUM (LATS 2022), 2022,
  • [7] Robot Gesture and User Acceptance of Information in Human-Robot Interaction
    Kim, Aelee
    Kum, Hyejin
    Roh, Ounjung
    You, Sangseok
    Lee, Sukhan
    HRI'12: PROCEEDINGS OF THE SEVENTH ANNUAL ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, 2012, : 279 - 280
  • [8] Human Body Pose Interpretation and Classification for Social Human-Robot Interaction
    McColl, Derek
    Zhang, Zhe
    Nejat, Goldie
    INTERNATIONAL JOURNAL OF SOCIAL ROBOTICS, 2011, 3 (03) : 313 - 332
  • [9] Human Body Pose Interpretation and Classification for Social Human-Robot Interaction
    Derek McColl
    Zhe Zhang
    Goldie Nejat
    International Journal of Social Robotics, 2011, 3
  • [10] A Method of Intention Estimation for Human-Robot Interaction
    Luo, Jing
    Liu, Chao
    Wang, Ning
    Yang, Chenguang
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS (UKCI 2019), 2020, 1043 : 69 - 80