The purpose of the present study was to compare the effects of several depolarizing agents on both the membrane potential and on the release of [H-3] gamma-aminobutyric acid (GABA) from sheep brain cortex synaptosomes. We examined the effects of KCl, 4-aminopyridine (4-AP), veratridine, ouabain and tetraphenylphosphonium cation (TPP+) on Ca2+-independent (carrier-mediated) and Ca2+-dependent (exocytotic) release. We found that, in the absence of Ca2+, KCl at 40 mM releases 7.57 +/- 0.65%, veratridine at 50-mu-M releases 45.85 +/- 2.48%, ouabain at 1 mM releases 8.62 +/- 0.93% and TPP+ at 1 mM releases 4.09 +/- 0.37% of the total accumulated neurotransmitter, provided that the external medium contains Na+. These are about the maximal values of release obtained with each depolarizing agent in a Na+ medium and in the absence of Ca2+. Replacing external Na+ with choline blocks the release observed in the presence of the depolarizing agents in the absence of Ca2+, and this divalent ion can increase [H-3]GABA release only for K+ or 4-AP. Synaptosomal depolarization requires Na+ except for K+ depolarization. Furthermore, although Ca2+ stimulates the release of [H-3]GABA due to K+ depolarization (13.56 +/- 0.44%) or due to 4-AP (4.26 +/- 0.51%), it inhibits the release due to the other depolarizing agents. The amount of [H-3]GABA released by 4-AP in Na+ medium (4.26 +/- 0.51%) is similar to that induced by KCl in the presence of Ca2+ in the absence of Na+ (3.39 +/- 0.29%) which represents only exocytotic release. This suggests that the Ca2+-dependent exocytotic release of [H-3]GABA can be specifically induced by 4-AP in a Na+ medium, or by KCl in the absence of Na+, as reported by us earlier. The observation that Ca2+ inhibits the Ca2+-independent release is of interest because it suggests that Ca2+ may modulate the release of cytoplasmic GABA probably by inhibiting the carrier-mediated release of GABA. It is of interest as to whether Ca2+ regulation depends on intracellular Ca2+.