ON A CONJECTURE OF NITSCHE

被引:0
|
作者
CROW, GD
机构
关键词
MINIMAL SURFACES; NITSCHE CONJECTURE; CATENOID; BOUNDED GAUSSIAN CURVATURE; FINITE TOTAL CURVATURE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that under the hypothesis of bounded Gaussian curvature, certain minimal surfaces are in fact of finite total curvature. We can then answer the following version of a conjecture of Nitsche (J. Math. Mech. 11 (1962), 295) under the hypothesis of bounded Gaussian curvature: Conjecture. Let M2 subset-of R3 be a complete minimal surface such that for some height function H, the level sets are (compact) Jordan curves. Then M is a catenoid.
引用
收藏
页码:1063 / 1068
页数:6
相关论文
共 50 条
  • [21] The Nitsche phenomenon for weighted Dirichlet energy
    Iwaniec, Tadeusz
    Onninen, Jani
    Radice, Teresa
    ADVANCES IN CALCULUS OF VARIATIONS, 2020, 13 (03) : 301 - 323
  • [22] Quadrature for Meshless Nitsche's Method
    Zhang, Qinghui
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (01) : 265 - 288
  • [23] Spectral investigations of Nitsche's method
    Harari, Isaac
    Albocher, Uri
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2018, 145 : 20 - 31
  • [24] PROVINCIAL PRUSSIA - GERMAN - NITSCHE,P
    BLANKE, R
    CANADIAN SLAVONIC PAPERS-REVUE CANADIENNE DES SLAVISTES, 1992, 34 (03): : 336 - 336
  • [25] Complementary Solutions of Nitsche's Method
    Harari, Isaac
    Albocher, Uri
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 1472 - 1492
  • [26] Chemical constituents of Daphne giraldii nitsche
    Sun, We-Xin
    Zhang, Qiang
    Jiang, Jian-Qin
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2006, 48 (12) : 1498 - 1501
  • [27] NITSCHE'S METHOD FOR KIRCHHOFF PLATES
    Gustafsson, Tom
    Stenberg, Rolf
    Videman, Juha
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (03): : A1651 - A1670
  • [28] A New Compound from Daphne giraldii Nitsche
    Wei Xin SUN
    Chinese Chemical Letters, 2006, (08) : 1054 - 1056
  • [29] A comparison of mortar and Nitsche techniques for linear elasticity
    Fritz, A
    Hüeber, S
    Wohlmuth, BI
    CALCOLO, 2004, 41 (03) : 115 - 137
  • [30] ON NITSCHE'S METHOD FOR ELASTIC CONTACT PROBLEMS
    Gustafsson, Tom
    Stenberg, Rolf
    Videman, Juha
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : B425 - B446