Lines on Planes in n-Dimensional Euclidean Spaces

被引:0
作者
Kubo, Akihiro [1 ]
机构
[1] Shinshu Univ, Nagano, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper we introduce basic properties of lines in the plane on this space. Lines and planes are expressed by the vector equation and are the image of R and R-2. By this, we can say that the properties of the classic Euclid geometry are satisfied also in R-n as we know them intuitively. Next, we define the metric between the point and the line of this space.
引用
收藏
页码:389 / 397
页数:9
相关论文
共 15 条
[1]  
Bancerek G., 1990, FORMALIZED MATH, V1, P91
[2]  
Bancerek G., 1990, FORMALIZED MATH, V1, P107
[3]  
Bylinski C., 1990, FORMALIZED MATH, V1, P55
[4]  
Bylinski Czeslaw, 1990, FORMALIZED MATH, V1, P529
[5]  
Bylinski Czeslaw, 1990, FORMALIZED MATH, V1, P47
[6]  
Bylinski Czeslaw, 1990, FORMALIZED MATH, V1, P661
[7]  
Darmochwal Agata, 1991, FORMALIZED MATH, V2, P599
[8]  
Hryniewiecki K., 1990, J FORMALIZ MATH, V1, P35
[9]  
KOTOWICZ J, 1990, FORMALIZED MATH, V1, P477
[10]  
Kubo Akihiro, 2003, FORMALIZED MATH, V11, P371