Lines on Planes in n-Dimensional Euclidean Spaces

被引:0
|
作者
Kubo, Akihiro [1 ]
机构
[1] Shinshu Univ, Nagano, Japan
来源
FORMALIZED MATHEMATICS | 2005年 / 13卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper we introduce basic properties of lines in the plane on this space. Lines and planes are expressed by the vector equation and are the image of R and R-2. By this, we can say that the properties of the classic Euclid geometry are satisfied also in R-n as we know them intuitively. Next, we define the metric between the point and the line of this space.
引用
收藏
页码:389 / 397
页数:9
相关论文
共 50 条
  • [1] Nondegenerate superintegrable systems in n-dimensional Euclidean spaces
    Kalnins, E. G.
    Kress, J. M.
    Miller, W.
    Pogosyan, G. S.
    PHYSICS OF ATOMIC NUCLEI, 2007, 70 (03) : 545 - 553
  • [2] Frame formalism for the N-dimensional quantum Euclidean spaces
    Cerchiai, BL
    Madore, J
    Fiore, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (22-23): : 2305 - 2314
  • [3] Nondegenerate superintegrable systems in n-dimensional Euclidean spaces
    E. G. Kalnins
    J. M. Kress
    W. Miller
    G. S. Pogosyan
    Physics of Atomic Nuclei, 2007, 70 : 545 - 553
  • [4] Enfolding N-dimensional Euclidean spaces with N-dimensional spheres as a framework to define the structure of time foam
    Carbo-Dorca, Ramon
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (06) : 1450 - 1455
  • [5] Enfolding N-dimensional Euclidean spaces with N-dimensional spheres as a framework to define the structure of time foam
    Ramon Carbó-Dorca
    Journal of Mathematical Chemistry, 2021, 59 : 1450 - 1455
  • [6] The Correspondence Between n-dimensional Euclidean Space and the Product of n Real Lines
    Kornilowicz, Artur
    FORMALIZED MATHEMATICS, 2010, 18 (01): : 81 - 85
  • [7] Homotopic properties of KA-digitizations of n-dimensional Euclidean spaces
    Han, Sang-Eon
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (01): : 236 - 253
  • [8] PROPERTIES OF SYMMETRY ELEMENTS OF N-DIMENSIONAL LATTICES IN MINKOWSKI AND EUCLIDEAN SPACES
    BALTAG, IA
    DOKLADY AKADEMII NAUK SSSR, 1990, 313 (06): : 1292 - 1295
  • [9] IMMERSION OF LOBACHEVSKIAN N-DIMENSIONAL SPACES INTO EUCLIDEAN (2N-1)-DIMENSIONAL SPACE
    AMINOV, YA
    DOKLADY AKADEMII NAUK SSSR, 1977, 236 (03): : 521 - 524
  • [10] N-Dimensional Approximation of Euclidean Distance
    Cardarilli, Gian Carlo
    Di Nunzio, Luca
    Fazzolari, Rocco
    Nannarelli, Alberto
    Re, Marco
    Spano, Sergio
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (03) : 565 - 569