Drug Delivered Poly(ethylene glycol) Diacrylate (PEGDA) Hydrogels and Their Mechanical Characterization Tests for Tissue Engineering Applications

被引:0
|
作者
Hanna, Kerolos [1 ]
Yasar-Inceoglu, Ozgul [2 ]
Yasar, Ozlem [1 ]
机构
[1] New York City Coll Technol, Dept Mech Engn Technol, Brooklyn, NY 11201 USA
[2] Calif State Univ Chico, Dept Mech Engn, Chico, CA 95929 USA
来源
MRS ADVANCES | 2018年 / 3卷 / 30期
关键词
D O I
10.1557/adv.2018.104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tissue Engineering has been studied to develop tissues as an alternative approach to the organ regeneration. Successful artificial tissue growth in regenerative medicine depends on the precise scaffold fabrication as well as the cell-cell and cell-scaffold interaction. Scaffolds are extracellular matrices that guide cells to grow in 3D to regenerate the tissues. Cell-seeded scaffolds must be implanted to the damaged tissues to do the tissue regeneration. Scaffolds' mechanical properties and porosities are the two main scaffold fabrication parameters as the scaffolds must be able to hold the pressure due to the surrounding tissues after the implantation process. In this research, scaffolds were fabricated by photolithography and Poly(ethylene glycol) Diacrylate (PEGDA) which is a biocompatible and biodegradable material was used as a fabrication material. In order to compare the compressive properties of PEGDA only with the compressive properties of drug delivered PEGDA, firstly, PEGDA only solutions were prepared. Then, PEGDA was mixed with Meloxicam 15 mg, Hydrochlorothiazide 12.5 mg, Cyclobenzaprine 10 mg and Spironolactone-hctz 25-25 mg respectively and they were placed under the UV light for about 15 minutes to solidify the cylindrical shaped hydrogels. 5 samples from each group were fabricated under the same conditions. Laboratory temperature, photoinitiator concentration and UV light intensity was kept constant during the fabrication process. After the fabrication was completed, Instron 3369 universal mechanical testing machine with the 5 mm/min compression rate was used to do the compression tests to compare the drug effects on PEGDA hydrogels. Our results indicate that average ultimate strength of PEGDA only samples was 3.820 MPa. Also, due to the fact that Meloxicam 15 mg and PEGDA mixture did not solidify under the UV light at all, compression test could not be performed for PEGDA-Meloxicam 15 mg mixture. However, Hydrochlorothiazide 12.5 mg, Cyclobenzaprine 10 mg and Spironolactone-hctz 25-25 mg dissolved within the PEGDA completely and our compression results show that average ultimate strengths were 3.372 MPa, 1.602 MPa, 1.999 MPa respectively. This preliminary research showcases that compressive properties of the PEGDA-based photopolymerized scaffolds can be altered with the control of the drug type and drug concentration.
引用
收藏
页码:1697 / 1702
页数:6
相关论文
共 50 条
  • [21] Degradation profiles of poly(ethylene glycol)diacrylate (PEGDA)-based hydrogel nanoparticles
    Stillman, Zachary
    Jarai, Bader M.
    Raman, Nisha
    Patel, Premal
    Fromen, Catherine A.
    POLYMER CHEMISTRY, 2020, 11 (02) : 568 - 580
  • [22] Rheological and recovery properties of poly(ethylene glycol) diacrylate hydrogels and human adipose tissue
    Patel, PN
    Smith, CK
    Patrick, CW
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2005, 73A (03) : 313 - 319
  • [23] Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering
    Zhu, Junmin
    BIOMATERIALS, 2010, 31 (17) : 4639 - 4656
  • [24] On shockwave propagation and attenuation in poly(ethylene glycol) diacrylate hydrogels
    Luo, Ke
    Subhash, Ghatu
    Spearot, Douglas E.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2021, 118
  • [25] Poly(methacrylic acid) hydrogels crosslinked by poly(ethylene glycol) diacrylate as pH-responsive systems for drug delivery applications
    Ugrinovic, Vukasin
    Markovic, Maja
    Bozic, Bojan
    Panic, Vesna
    Veljovic, Dorde
    HEMIJSKA INDUSTRIJA, 2023,
  • [26] Poly(methacrylic acid) hydrogels crosslinked by poly(ethylene glycol) diacrylate as pH-responsive systems for drug delivery applications
    Ugrinovic, Vukasin
    Markovic, Maja
    Bozic, Bojan
    Panic, Vesna
    Veljovic, Djordje
    HEMIJSKA INDUSTRIJA, 2023, 77 (04) : 235 - 249
  • [27] Controlling Fluid Diffusion and Release through Mixed-Molecular-Weight Poly(ethylene) Glycol Diacrylate (PEGDA) Hydrogels
    O'Donnell, Kieran
    Boyd, Adrian
    Meenan, Brian J.
    MATERIALS, 2019, 12 (20)
  • [28] Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application
    Sannino, A.
    Netti, P. A.
    Madaghiele, M.
    Coccoli, V.
    Luciani, A.
    Maffezzoli, A.
    NicolaiS, L.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 79A (02) : 229 - 236
  • [29] Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels
    Cruise, GM
    Scharp, DS
    Hubbell, JA
    BIOMATERIALS, 1998, 19 (14) : 1287 - 1294
  • [30] Hierarchically designed interpenetrating network hydrogels of oxidized dextran, amino gelatin, and poly(ethylene glycol) diacrylate for tissue engineering
    Geng, Xiaohua
    Mo, Xiumei
    JOURNAL OF CONTROLLED RELEASE, 2013, 172 (01) : E143 - E144