DIOPHANTINE APPROXIMATION BY LINEAR-FORMS ON MANIFOLDS

被引:1
作者
DODSON, MM
RYNNE, BP
VICKERS, JAG
机构
[1] HERIOT WATT UNIV,DEPT MATH,EDINBURGH EH14 4AS,MIDLOTHIAN,SCOTLAND
[2] UNIV SOUTHAMPTON,FAC MATH STUDIES,SOUTHAMPTON SO9 5NH,HANTS,ENGLAND
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 1990年 / 100卷 / 03期
关键词
Hausdorff dimension; Khintchine's theorem; manifolds; Metric diophantine approximation;
D O I
10.1007/BF02837845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following Khintchine-type theorem is proved for manifolds M embedded in ℝ k which satisfy some mild curvature conditions. The inequality |q·x| <Ψ(|q|) where Ψ(r) → 0 as r → ∞ has finitely or infinitely many solutions qεℤ k for almost all (in induced measure) points x on M according as the sum Σ r = 1/∞ Ψ(r)r k-2 converges or diverges (the divergent case requires a slightly stronger curvature condition than the convergent case). Also, the Hausdorff dimension is obtained for the set (of induced measure 0) of point in M satisfying the inequality infinitely often when ψ(r) =r -t . τ >k - 1. © 1990 Indian Academy of Sciences.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 9 条
[1]  
Arnold VI., 1983, GEOMETRICAL METHODS
[2]  
BAKER RC, 1982, J LOND MATH SOC, V25, P201
[3]  
Cassels J.W.S., 1957, INTRO DIOPHANTINE AP
[4]   EXCEPTIONAL SETS IN KOLMOGOROV-ARNOLD-MOSER THEORY [J].
DODSON, MM ;
VICKERS, JAG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (03) :349-374
[5]   DIOPHANTINE APPROXIMATION AND A LOWER BOUND FOR HAUSDORFF DIMENSION [J].
DODSON, MM ;
RYNNE, BP ;
VICKERS, JAG .
MATHEMATIKA, 1990, 37 (73) :59-73
[6]  
DODSON MM, 1989, IN PRESS ACTA ARITH, V105, P547
[7]  
KOBAYASHI S, 1969, F DIFFERENTIAL GEOME, V2
[8]  
Moser J, 1973, ANN MATH STUDIES, V77
[9]  
SPRIDZUK VG, 1979, METRIC THEORY DIOPHA