Interactions Between Moderately Close Inclusions for the Two-Dimensional Dirichlet-Laplacian

被引:12
作者
Bonnaillie-Noel, Virginie [1 ]
Dambrine, Marc [2 ]
Lacave, Christophe [3 ]
机构
[1] CNRS, ENS Paris, DMA, UMR Paris Sci & Lettres 8553, 45 Rue Ulm, F-75230 Paris 05, France
[2] Univ Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Leurs Applicat, Av Univ BP 1155, F-64013 Pau, France
[3] UPMC Univ Paris 06, Sorbonne Univ, Univ Paris Diderot,UMR 7586, CNRS,,Inst Math Jussieu Paris Rive Gauche,Sorbonn, F-75013 Paris, France
关键词
D O I
10.1093/amrx/abv008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the asymptotic expansion of the solution of the Dirichlet-Laplace problem in a domain with small inclusions. This problem is well understood for the Neumann condition in dimension >= 2 or the Dirichlet condition in dimension >= 3. The case of two circular inclusions in a bidimensional domain was considered in[ 1]. In this paper, we generalize the previous result to any shape and relax the assumptions of regularity and support of the data. Our approach uses conformal mapping and suitable lifting of Dirichlet conditions. We also analyze configurations with several scales for the distance between the inclusions (when the number is larger than 2).
引用
收藏
页码:1 / 23
页数:23
相关论文
共 21 条
[1]   Interactions between moderately close circular inclusions: The Dirichlet-Laplace equation in the plane [J].
Bonnaillie-Noel, V. ;
Dambrine, M. .
ASYMPTOTIC ANALYSIS, 2013, 84 (3-4) :197-227
[2]   INTERACTIONS BETWEEN MODERATELY CLOSE INCLUSIONS FOR THE LAPLACE EQUATION [J].
Bonnaillie-Noel, Virginie ;
Dambrine, Marc ;
Tordeux, Sebastien ;
Vial, Gregory .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (10) :1853-1882
[3]  
Chesnel L., 2014, NUMERICAL APPROACH P
[4]   Asymptotics without logarithmic terms for crack problems [J].
Costabel, M ;
Dauge, M ;
Duduchava, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :869-926
[5]   Real analytic families of harmonic functions in a planar domain with a small hole [J].
Dalla Riva, M. ;
Musolino, P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) :37-55
[6]   Real analytic families of harmonic functions in a domain with a small hole [J].
Dalla Riva, M. ;
Musolino, P. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (12) :6337-6355
[7]  
Dambrine M, 2005, CONTROL CYBERN, V34, P117
[8]   A multiscale correction method for local singular perturbations of the boundary [J].
Dambrine, Marc ;
Vial, Gregory .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (01) :111-127
[9]  
GIROIRE J, 1987, THESIS
[10]  
Henrici P., 1986, PURE APPL MATH, P3