(JCLR) property and fixed point in non-Archimedean fuzzy metric spaces

被引:3
作者
Beg, I. [1 ]
Ahmed, M. A. [2 ]
Nafadi, H. A. [3 ]
机构
[1] Lahore Sch Econ, Lahore, Pakistan
[2] Assiut Univ, Dept Math, Fac Sci, Assiut 71516, Egypt
[3] Port Said Univ, Dept Math, Fac Sci, Port Said, Egypt
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2018年 / 9卷 / 01期
关键词
fixed point; (JCLR) property; non-Archimedean fuzzy metric space; hybrid map;
D O I
10.22075/ijnaa.2018.10861.1529
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present paper is to introduce the concept of joint common limit range property ((JCLR) property) for singl-valued and set-valued maps in non-Archimedean fuzzy metric spaces. We also list some examples to show the difference between (CLR) property and (JCLR) property. Further, we establish common fixed point theorems using implicit relation with integral contractive condition. Several examples to illustrate the significance of our results are given.
引用
收藏
页码:195 / 201
页数:7
相关论文
共 14 条
[1]  
AHMED M.A., 2014, J EGYPTIAN MATH SOC, V22, P453
[2]  
Altun I, 2010, IRAN J FUZZY SYST, V7, P91
[3]  
Beg I., 2016, J NONLINEAR FUNCT AN, V2016, P311
[4]  
Chauhan S., 2012, APPL MATH, V3, P976
[5]  
De la Sen, 2016, FIXED POINT THEORY A, V2016, P44, DOI DOI 10.1186/S13663-016-0534-3
[6]   ON SOME RESULTS IN FUZZY METRIC-SPACES [J].
GEORGE, A ;
VEERAMANI, P .
FUZZY SETS AND SYSTEMS, 1994, 64 (03) :395-399
[7]  
KRAMOSIL I, 1975, KYBERNETIKA, V11, P336
[8]  
Martinez-Moreno J, 2015, FIXED POINT THEORY A, DOI 10.1186/s13663-015-0297-2
[9]   Noncommutativity of mappings in hybrid fixed point results [J].
Pathak, Hemant Kumar ;
Rodriguez-Lopez, Rosana .
BOUNDARY VALUE PROBLEMS, 2013,
[10]   The Hausdorff fuzzy metric on compact sets [J].
Rodríguez-López, J ;
Romaguera, S .
FUZZY SETS AND SYSTEMS, 2004, 147 (02) :273-283