RIEMANNIAN FOLIATIONS ON MANIFOLDS WITH NONNEGATIVE CURVATURE

被引:8
作者
KIM, H
TONDEUR, P
机构
[1] Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
关键词
D O I
10.1007/BF02567656
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a Riemannian foliation F satisfying a certain inequality between the turbulence of F and a partial non-negative Ricci curvature is necessarily totally geodesic. The inequality is best possible.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 10 条
[1]  
Abe, 1973, TOHOKU MATH J, V25, P425
[2]   TOTALLY GEODESIC FOLIATIONS [J].
FERUS, D .
MATHEMATISCHE ANNALEN, 1970, 188 (04) :313-&
[3]  
HEBDA J, IN PRESS P AM MATH S
[4]   CURVATURE PROPERTIES OF HARMONIC FOLIATIONS [J].
KAMBER, FW ;
TONDEUR, P .
ILLINOIS JOURNAL OF MATHEMATICS, 1984, 28 (03) :458-471
[5]  
ONEILL B, 1966, MICH MATH J, V13, P459
[6]   A REMARK ON MINIMAL FOLIATIONS [J].
OSHIKIRI, GI .
TOHOKU MATHEMATICAL JOURNAL, 1981, 33 (01) :133-137
[7]   ON A REMARK OF ONEILL [J].
RANJAN, A .
DUKE MATHEMATICAL JOURNAL, 1986, 53 (01) :113-115
[8]  
REINHART B, 1983, ERGEB MATH, V99
[9]   FOLIATED MANIFOLDS WITH BUNDLE-LIKE METRICS [J].
REINHART, BL .
ANNALS OF MATHEMATICS, 1959, 69 (01) :119-132
[10]  
Tondeur P, 1988, FOLIATIONS RIEMANNIA