EXISTENCE OF SOLUTIONS FOR A VARIATIONAL PROBLEM ASSOCIATED TO MODELS IN OPTIMAL FORAGING THEORY

被引:10
作者
BOTTERON, B
DACOROGNA, B
机构
[1] Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne
关键词
D O I
10.1016/0022-247X(90)90397-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Realistic extensions of a model by R. Arditi and B. Dacorogna (1985, Math. Biosci. 76, 127-145) in optimal foraging theory are considered. Mathematically, they correspond to minimization problems (in the calculus of variations) of convex but not coercive functionals: E(v) = ∝ g(x, v′) dx with prescribed boundary conditions and v′ ≥ β ≥ 0. Existence, uniqueness, and characterization of solutions are given. The limits of the result are discussed, in particular the case with dependence on v: g = g(x, v, v′). © 1990.
引用
收藏
页码:263 / 276
页数:14
相关论文
共 15 条
[1]   OPTIMAL FORAGING IN NONPATCHY HABITATS .2. UNBOUNDED ONE-DIMENSIONAL HABITAT [J].
ARDITI, R ;
DACOROGNA, B .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (04) :800-821
[2]   OPTIMAL FORAGING IN NONPATCHY HABITATS .1. BOUNDED ONE-DIMENSIONAL RESOURCE [J].
ARDITI, R ;
DACOROGNA, B .
MATHEMATICAL BIOSCIENCES, 1985, 76 (02) :127-145
[3]  
ARDITI R, AM NATUR
[4]  
Cesari L., 1983, OPTIMIZATION THEORY
[5]   OPTIMAL FORAGING, MARGINAL VALUE THEOREM [J].
CHARNOV, EL .
THEORETICAL POPULATION BIOLOGY, 1976, 9 (02) :129-136
[6]  
Clark C.W., 1976, MATH BIOECONOMICS
[7]  
Dacorogna, 1989, APPL MATH SCI, V78
[8]   OPTIMAL FORAGING OF STICKLEBACKS ON SWARMING PREY [J].
HELLER, R ;
MILINSKI, M .
ANIMAL BEHAVIOUR, 1979, 27 (NOV) :1127-1141
[9]  
Krebs J.R., 1984, BEHAV ECOLOGY EVOLUT, P91
[10]  
LEE EB, 1967, F OPTIMAL CONTROL TH