Robustness of Fuzzy Reasoning Based on Schweizer-Sklar Interval-valued t-Norms

被引:7
作者
Luo, Min-Xia [1 ]
Cheng, Ze [1 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Schweizer-Sklar interval-valued operator; Interval-valued fuzzy connective; Interval-valued fuzzy inference; Robustness;
D O I
10.1016/j.fiae.2016.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we focus on the parametric triple I algorithms by the combination of Schweizer-Sklar interval-valued operators and triple I principles for fuzzy reasoning. Firstly, we give the interval-valued triple I solutions based on Schweizer-Sklar interval-valued operators. Then, we investigate the sensitivity of Schweizer-Sklar interval-valued fuzzy connectives. Finally, we study the robustness of the triple I algorithms based on Schweizer-Sklar interval-valued t-norms (m is an element of (0,infinity)). It shows that the quality of interval-valued fuzzy reasoning algorithms depends on the selection of interval-valued fuzzy connectives.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 33 条
[1]   A constructive method for the definition of interval-valued fuzzy implication operators [J].
Alcalde, C ;
Burusco, A ;
Fuentes-González, R .
FUZZY SETS AND SYSTEMS, 2005, 153 (02) :211-227
[2]   Robustness analysis of full implication inference method [J].
Dai, Songsong ;
Pei, Daowu ;
Guo, Donghui .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (05) :653-666
[3]   Classes of intuitionistic fuzzy t-norms satisfying the residuation principle [J].
Deschrijver, G ;
Kerre, EE .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2003, 11 (06) :691-709
[4]   On the representation of intuitionistic fuzzy t-norms and t-conorms [J].
Deschrijver, G ;
Cornelis, C ;
Kerre, EE .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (01) :45-61
[5]   A representation of t-norms in interval-valued L-fuzzy set theory [J].
Deschrijver, Glad .
FUZZY SETS AND SYSTEMS, 2008, 159 (13) :1597-1618
[6]  
Gasse B.V., 2008, FUZZY SETS SYSTEMS, V159, P1042
[7]  
Hardy G. H., 1952, MATH GAZ
[8]  
He H.C., 2006, PRINCIPLE UNIVERSAL
[9]   A more efficient method for defining fuzzy connectives [J].
Jenei, S .
FUZZY SETS AND SYSTEMS, 1997, 90 (01) :25-35
[10]   Triangular norms. Position paper II: general constructions and parameterized families [J].
Klement, EP ;
Mesiar, R ;
Pap, E .
FUZZY SETS AND SYSTEMS, 2004, 145 (03) :411-438