CANONICAL FORMALISM FOR THE (2+1)-D NONLINEAR SCHRODINGER-EQUATION

被引:3
作者
DENICOLA, S
机构
[1] Istituto di Cibernetica, Consiglio Nazionale delle Ricerche, Naples
关键词
Equations Of Motion - Mathematical Techniques--Variational Techniques - Quantum Theory;
D O I
10.1016/0030-4018(92)90504-K
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is shown that the (2 + 1)-D nonlinear Schrodinger equation (NSE) can be derived on the basis of a variational principle. We develop a lagrangian formulation which provides a convenient way of identifying the constants of motion of the equation.
引用
收藏
页码:157 / 159
页数:3
相关论文
共 6 条
[1]  
ARECCHI FT, 1972, LASER HDB, V2, P1162
[2]  
BUTYLKIN VS, 1989, RESONANT NONLINEAR I, P270
[3]  
GOLDSTEIN H, 1950, CLASSICAL MECHANICS, P548
[4]   DERIVATION OF THE VECTORIAL WAVE-EQUATION FROM A VARIATIONAL POINT-OF-VIEW [J].
JORGENSEN, TM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1991, 8 (05) :750-754
[5]  
LANDAU LM, 1962, CLASSICAL THEORY FIE, P26
[6]   SPATIAL DARK-SOLITON STRIPES AND GRIDS IN SELF-DEFOCUSING MATERIALS [J].
SWARTZLANDER, GA ;
ANDERSEN, DR ;
REGAN, JJ ;
YIN, H ;
KAPLAN, AE .
PHYSICAL REVIEW LETTERS, 1991, 66 (12) :1583-1586