CHARACTERIZATION OF NGG1, A NOVEL YEAST GENE REQUIRED FOR GLUCOSE REPRESSION OF GAL4P-REGULATED TRANSCRIPTION

被引:46
作者
BRANDL, CJ
FURLANETTO, AM
MARTENS, JA
HAMILTON, KS
机构
[1] Department of Biochemistry, University of Western Ontario, London
关键词
ADA3; GAL4; GAL80; GLUCOSE REPRESSION; TRANSCRIPTION REGULATION;
D O I
10.1002/j.1460-2075.1993.tb06221.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The GAL1-10 genes of Saccharomyces cerevisiae are regulated by the interaction of cis- and trans-acting factors which facilitate activated transcription in galactose but not in glucose medium. By selecting mutations that allow expression of a defective gal1-10-his3 hybrid promoter, we have identified a novel gene, NGG1, which is required for glucose repression of the GAL10-related his3-G25 promoter. ngg1 was identified as a recessive null mutation that in the presence of a gal80 background resulted in a 300-fold relief of glucose repression for the his3-G25 promoter. This compared with a 20-fold and negligible relief of repression in gal80 and ngg1 strains, respectively. Deletion analysis of the his3-G25 promoter showed a correlation between the number of GAL4p binding sites and the relative level of NGG1p activity. Relief of glucose repression by NGG1 was dependent on the presence of GAL4, but was independent of the GAL4 promoter. In addition, NGG1p activity was seen for a promoter construct containing independent GAL4p binding sites. These results suggest that NGG1p acts to inhibit GAL4p function in glucose medium. We have cloned NGG1 by complementation and found that it contains an open reading frame of 2106 bp which could encode a protein with a molecular weight of 79 230.
引用
收藏
页码:5255 / 5265
页数:11
相关论文
共 83 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]  
Ausubel FM., 1990, CURRENT PROTOCOLS MO
[3]   GENETIC ISOLATION OF ADA2 - A POTENTIAL TRANSCRIPTIONAL ADAPTER REQUIRED FOR FUNCTION OF CERTAIN ACIDIC ACTIVATION DOMAINS [J].
BERGER, SL ;
PINA, B ;
SILVERMAN, N ;
MARCUS, GA ;
AGAPITE, J ;
REGIER, JL ;
TRIEZENBERG, SJ ;
GUARENTE, L .
CELL, 1992, 70 (02) :251-265
[4]  
BHAT PJ, 1990, GENETICS, V125, P281
[5]   OVERPRODUCTION OF THE GAL1 OR GAL3 PROTEIN CAUSES GALACTOSE-INDEPENDENT ACTIVATION OF THE GAL4 PROTEIN - EVIDENCE FOR A NEW MODEL OF INDUCTION FOR THE YEAST GAL MEL REGULON [J].
BHAT, PJ ;
HOPPER, JE .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (06) :2701-2707
[6]   A POSITIVE SELECTION FOR MUTANTS LACKING OROTIDINE-5'-PHOSPHATE DECARBOXYLASE ACTIVITY IN YEAST - 5-FLUORO-OROTIC ACID RESISTANCE [J].
BOEKE, JD ;
LACROUTE, F ;
FINK, GR .
MOLECULAR & GENERAL GENETICS, 1984, 197 (02) :345-346
[7]   A GAL FAMILY OF UPSTREAM ACTIVATING SEQUENCES IN YEAST - ROLES IN BOTH INDUCTION AND REPRESSION OF TRANSCRIPTION [J].
BRAM, RJ ;
LUE, NF ;
KORNBERG, RD .
EMBO JOURNAL, 1986, 5 (03) :603-608
[8]   A NUCLEOSOME-POSITIONING SEQUENCE IS REQUIRED FOR GCN4 TO ACTIVATE TRANSCRIPTION IN THE ABSENCE OF A TATA ELEMENT [J].
BRANDL, CJ ;
STRUHL, K .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (08) :4256-4265
[9]  
BRANDL CJ, 1992, J BIOL CHEM, V267, P20943
[10]   A MECHANISM FOR SYNERGISTIC ACTIVATION OF A MAMMALIAN GENE BY GAL4 DERIVATIVES [J].
CAREY, M ;
LIN, YS ;
GREEN, MR ;
PTASHNE, M .
NATURE, 1990, 345 (6273) :361-364