COEXISTENCE THEOREMS OF STEADY-STATES FOR PREDATOR-PREY INTERACTING SYSTEMS

被引:189
作者
LI, LG [1 ]
机构
[1] KANSAS STATE UNIV AGR & APPL SCI,DEPT MATH,MANHATTAN,KS 66506
关键词
D O I
10.2307/2001045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:143 / 166
页数:24
相关论文
共 50 条
[41]   Coexistence States of a Ratio-Dependent Predator-Prey Model with Nonlinear Diffusion [J].
Nitu Kumari ;
Nishith Mohan .
Acta Applicandae Mathematicae, 2021, 176
[42]   NON-CONSTANT POSITIVE STEADY-STATES OF A PREDATOR-PREY-MUTUALIST MODEL [J].
CHEN WENYAN WANG MINGXIN Department of Mathematics Southeast University Nanjing China Department of Mathematics Southeast University Nanjing China .
ChineseAnnalsofMathematics, 2004, (02) :243-254
[43]   THE EFFECTS OF INTERACTING SPECIES ON PREDATOR-PREY COEVOLUTION [J].
ABRAMS, PA .
THEORETICAL POPULATION BIOLOGY, 1991, 39 (03) :241-262
[44]   ON THE CONTROLLABILITY OF PREDATOR-PREY SYSTEMS [J].
JOSHI, MC ;
GEORGE, RK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (02) :243-258
[45]   STABILITY OF PREDATOR-PREY SYSTEMS [J].
SMITH, JM ;
SLATKIN, M .
ECOLOGY, 1973, 54 (02) :384-391
[46]   Impact of Intraspecific Competition of Predator on Coexistence of a Predator-Prey Model with Additive Predation on Prey [J].
Bai, Dingyong ;
Xie, Mingming ;
Wu, Jianhong ;
Zheng, Bo ;
Yu, Jianshe ;
Kang, Yun .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2025, 24 (02) :1191-1230
[47]   STABILITY OF PREDATOR-PREY SYSTEMS [J].
SMITH, JM .
BIOMETRICS, 1972, 28 (04) :1158-1158
[48]   Evolution in predator-prey systems [J].
Durrett, Rick ;
Mayberry, John .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (07) :1364-1392
[49]   BIFURCATION OF STEADY-STATE SOLUTIONS IN PREDATOR-PREY AND COMPETITION SYSTEMS [J].
BLAT, J ;
BROWN, KJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 97 :21-34
[50]   ON FLUCTUATIONS OF THE PREDATOR-PREY SYSTEMS [J].
GILL, MI .
IZVESTIYA AKADEMII NAUK SSSR SERIYA BIOLOGICHESKAYA, 1987, (04) :621-622