The Dirichlet problem in a domain with a slit

被引:0
作者
Subbotin, Yu. N. [1 ,2 ]
Chernykh, N. I. [1 ,2 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Math & Mech, Phys Mat Sci, Moscow, Russia
[2] Russian Acad Sci, Ural Branch, Inst Math & Mech, Moscow, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2009年 / 15卷 / 01期
关键词
harmonic wavelets; Dirichlet problem; domain with a slit; asymptotic expansion; approximation error;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A basis of harmonic wavelets is constructed in an elliptic ring and its approximation properties are investigated. The obtained results are used to analyze the behavior of a boundary - value Dirichlet problem under the contraction of the inner boundary of the ring to a segment.
引用
收藏
页码:208 / 221
页数:14
相关论文
共 50 条
[41]   Dirichlet problem for a third-order equation of mixed type in a rectangular domain [J].
K. B. Sabitov .
Differential Equations, 2011, 47
[42]   Solution the Dirichlet Problem for Multiply Connected Domain Using Numerical Conformal Mapping [J].
Abzalilov, D. F. ;
Ivanshin, P. N. ;
Shirokova, E. A. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) :1419-1429
[43]   Solution the Dirichlet Problem for Multiply Connected Domain Using Numerical Conformal Mapping [J].
D. F. Abzalilov ;
P. N. Ivanshin ;
E. A. Shirokova .
Complex Analysis and Operator Theory, 2019, 13 :1419-1429
[44]   The Dirichlet Problem for a Mixed-Type Equation with Characteristic Degeneration in a Rectangular Domain [J].
Sabitov, K. B. ;
Suleimanova, A. Kh. .
RUSSIAN MATHEMATICS, 2009, 53 (11) :37-45
[45]   Dirichlet problem for an equation of mixed type with two degeneration lines in a rectangular domain [J].
Sabitov, K. B. ;
Vagapova, E. V. .
DIFFERENTIAL EQUATIONS, 2013, 49 (01) :68-78
[46]   Dirichlet problem for an equation of mixed type with two degeneration lines in a rectangular domain [J].
K. B. Sabitov ;
E. V. Vagapova .
Differential Equations, 2013, 49 :68-78
[47]   THE SPECTRUM ASYMPTOTICS FOR THE DIRICHLET PROBLEM IN THE CASE OF THE BIHARMONIC OPERATOR IN A DOMAIN WITH HIGHLY INDENTED BOUNDARY [J].
Kozlov, V. A. ;
Nazarov, S. A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2011, 22 (06) :941-983
[48]   Dirichlet problem for the stokes flow function in a simply-connected domain of the meridian plane [J].
S. A. Plaksa .
Ukrainian Mathematical Journal, 2003, 55 (2) :241-281
[49]   Global representation and multiscale expansion for the Dirichlet problem in a domain with a small hole close to the boundary [J].
Bonnaillie-Noel, Virginie ;
Dalla Riva, Matteo ;
Dambrine, Marc ;
Musolino, Paolo .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (02) :282-309
[50]   Properties of solutions of the Dirichlet problem for the Helmholtz equation in a two-dimensional domain with cuts [J].
P. A. Krutitskii .
Differential Equations, 2007, 43 :1200-1212