The Dirichlet problem in a domain with a slit

被引:0
作者
Subbotin, Yu. N. [1 ,2 ]
Chernykh, N. I. [1 ,2 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Math & Mech, Phys Mat Sci, Moscow, Russia
[2] Russian Acad Sci, Ural Branch, Inst Math & Mech, Moscow, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2009年 / 15卷 / 01期
关键词
harmonic wavelets; Dirichlet problem; domain with a slit; asymptotic expansion; approximation error;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A basis of harmonic wavelets is constructed in an elliptic ring and its approximation properties are investigated. The obtained results are used to analyze the behavior of a boundary - value Dirichlet problem under the contraction of the inner boundary of the ring to a segment.
引用
收藏
页码:208 / 221
页数:14
相关论文
共 50 条
[31]   On Dirichlet problem [J].
Gushchin, A. K. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 218 (01) :51-67
[32]   The dirichlet problem for a mixed-type equation of the second kind in a rectangular domain [J].
K. B. Sabitov ;
A. Kh. Suleimanova .
Russian Mathematics, 2007, 51 (4) :42-50
[33]   The Dirichlet Problem for an Elliptic Equation with Singular Coefficients in a Semi-Cylindrical Domain [J].
A. K. Urinov ;
K. T. Karimov .
Lobachevskii Journal of Mathematics, 2020, 41 :1898-1909
[34]   ASYMPTOTIC EXPANSION OF SOLUTION TO DIRICHLET PROBLEM IN PERFORATED DOMAIN: STRANGE TERM CASE [J].
Borisov, D., I .
UFA MATHEMATICAL JOURNAL, 2022, 14 (04) :26-41
[35]   On the Properties of Solutions of the Harmonic Dirichlet Problem in a Two-Dimensional Domain with Cuts [J].
Krutitskii, P. A. .
DIFFERENTIAL EQUATIONS, 2010, 46 (09) :1287-1298
[36]   On the properties of solutions of the harmonic Dirichlet problem in a two-dimensional domain with cuts [J].
P. A. Krutitskii .
Differential Equations, 2010, 46 :1287-1298
[37]   Dirichlet problem for a third-order equation of mixed type in a rectangular domain [J].
Sabitov, K. B. .
DIFFERENTIAL EQUATIONS, 2011, 47 (05) :706-714
[38]   Dirichlet problem for a divergence form elliptic equation with unbounded coefficients in an unbounded domain [J].
Chicco M. ;
Venturing M. .
Annali di Matematica Pura ed Applicata, 2000, 178 (1) :325-338
[39]   The Dirichlet Problem for an Elliptic Equation with Singular Coefficients in a Semi-Cylindrical Domain [J].
Urinov, A. K. ;
Karimov, K. T. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (09) :1898-1909
[40]   The Dirichlet problem for a mixed-type equation with characteristic degeneration in a rectangular domain [J].
K. B. Sabitov ;
A. Kh. Suleimanova .
Russian Mathematics, 2009, 53 (11) :37-45