The Dirichlet problem in a domain with a slit

被引:0
作者
Subbotin, Yu. N. [1 ,2 ]
Chernykh, N. I. [1 ,2 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Math & Mech, Phys Mat Sci, Moscow, Russia
[2] Russian Acad Sci, Ural Branch, Inst Math & Mech, Moscow, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2009年 / 15卷 / 01期
关键词
harmonic wavelets; Dirichlet problem; domain with a slit; asymptotic expansion; approximation error;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A basis of harmonic wavelets is constructed in an elliptic ring and its approximation properties are investigated. The obtained results are used to analyze the behavior of a boundary - value Dirichlet problem under the contraction of the inner boundary of the ring to a segment.
引用
收藏
页码:208 / 221
页数:14
相关论文
共 50 条
[21]   The dirichlet problem for a loaded mixed-type equation in a rectangular domain [J].
Sabitov K.B. ;
Melisheva E.P. .
Russian Mathematics, 2013, 57 (7) :53-65
[22]   The Dirichlet Problem for an Elliptic Equation with Several Singular Coefficients in an Infinite Domain [J].
Ergashev, T. G. ;
Tulakova, Z. R. .
RUSSIAN MATHEMATICS, 2021, 65 (07) :71-80
[23]   On an Efficient Solution of the Dirichlet Problem for Properly Elliptic Equation in the Elliptic Domain [J].
Babayan, A. H. ;
Veziryan, R. M. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2024, 59 (02) :77-87
[24]   Localization of Eigenfunctions of the Dirichlet Problem near aContour at the Boundary of a Thin Domain [J].
Nazarov, S. A. .
DIFFERENTIAL EQUATIONS, 2024, 60 (12) :1719-1739
[25]   The Dirichlet Problem for an Elliptic Equation with Several Singular Coefficients in an Infinite Domain [J].
T. G. Ergashev ;
Z. R. Tulakova .
Russian Mathematics, 2021, 65 :71-80
[26]   Dirichlet problem for an axisymmetric potential in a simply connected domain of the meridian plane [J].
Plaksa S.A. .
Ukrainian Mathematical Journal, 2001, 53 (12) :1976-1997
[27]   Dirichlet Problem for a Two-Dimensional Wave Equationin a Cylindrical Domain [J].
Sabitov, K. B. .
DIFFERENTIAL EQUATIONS, 2025, 61 (01) :44-62
[28]   On the characteristic billiard and statements of the uniqueness problem of solution to the dirichlet problem for the vibrating string equation in a domain [J].
Burskii V.P. .
Journal of Mathematical Sciences, 2011, 173 (2) :181-187
[29]   On Dirichlet problem [J].
A. K. Gushchin .
Theoretical and Mathematical Physics, 2024, 218 :51-67
[30]   On the Dirichlet problem [J].
Villa-Morales, Jose .
EXPOSITIONES MATHEMATICAE, 2012, 30 (04) :406-411