MOLECULAR-DYNAMICS SIMULATIONS OF ISOLATED HELICES OF MYOGLOBIN

被引:75
|
作者
HIRST, JD [1 ]
BROOKS, CL [1 ]
机构
[1] SCRIPPS RES INST, DEPT MOLEC BIOL, LA JOLLA, CA 92037 USA
关键词
D O I
10.1021/bi00023a007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The apo form of myoglobin has two non-native stable states that have been experimentally characterized. Investigation of these states has suggested possible folding pathways for myoglobin. We have performed molecular dynamics simulations on solvated isolated helices of myoglobin to investigate the relationship between the intrinsic stabilities of the isolated helices and the structure and folding pathway of apomyoglobin. Analyses of hydrogen bonding and fluctuations from simulations at 298 and 368 K are used to explore the relative stabilities of the helices of myoglobin. The ordering observed is A approximate to G approximate to H > B > E > F, which mirrors both the experimental equilibrium and kinetic data available for apomyoglobin. The experimental observation that a subdomain comprising helices A, G, and H is an important early intermediate and our result that these helices are the most stable suggest that the intrinsically more stable helices form early in the folding process and that this significantly influences the folding pathway.
引用
收藏
页码:7614 / 7621
页数:8
相关论文
共 50 条