ON THE EXISTENCE OF 4 PERIODIC-SOLUTIONS FOR THE FORCED PENDULUM EQUATION

被引:0
作者
DONATI, F
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1993年 / 317卷 / 07期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the periodic problem for the forced pendulum equation without friction. In this Note we show that, whatever are the pendulum length and the oscillation period, there exist forcing terms having at least four different solutions. The proof relies on the study of the singular points of the Fredholm map naturally associated with the problem.
引用
收藏
页码:667 / 672
页数:6
相关论文
共 12 条
[1]  
Ambrosetti A., 1972, ANN MAT PUR APPL, V93, P231
[2]  
CAFAGNA V, 1989, CR ACAD SCI I-MATH, V309, P153
[3]  
CAFAGNA V, 1985, CR ACAD SCI I-MATH, V300, P523
[4]  
CAFAGNA V, IN PRESS SINGULARITY
[5]  
DONATI F, UNPUB MULTIPLE PERIO
[6]  
DONATI F, IN PRESS DIFFERENTIA
[7]  
MAWHIN J, 1992, 1990 P INT C CIFF EQ, P217
[8]  
MAWHIN J, 1985, POINTS FIXES POINTS
[9]  
MCKEAN HP, 1986, ANN SCUOLA NORM SU 4, V8, P299
[10]  
ORTEGA R, 1989, B UNIONE MAT ITAL, V3B, P533