DYNAMIC MECHANISMS OF DISORDERLY GROWTH - RECENT APPROACHES TO UNDERSTANDING DIFFUSION LIMITED AGGREGATION

被引:37
作者
STANLEY, HE
BUNDE, A
HAVLIN, S
LEE, J
ROMAN, E
SCHWARZER, S
机构
[1] BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215
[2] UNIV HAMBURG,INST THEORET PHYS 1,W-2000 HAMBURG 36,GERMANY
来源
PHYSICA A | 1990年 / 168卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0378-4371(90)90356-W
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We briefly review some recent attempts to achieve some genuine understanding of diffusion-limited aggregation (DLA), the paradigm model for dynamical mechanisms of disorderly growth processes. We shall see that the seminal ideas of Professor Cyril Domb have influenced to a great degree many of the recent theoretical approaches. In particular, the Domb-Hunter constant-gap scaling hypothesis becomes replaced by a continuum of gap exponents. Moreover, while the growth probabilities for the tips of the DLA structure do scale in the conventional fashion, there is evidence that the growth probabilities of the fjords do not scale. Does this competition between one part of DLA that does scale, and another that does not, underlie many of the unusual properties of this model? © 1990.
引用
收藏
页码:23 / 48
页数:26
相关论文
共 119 条
[1]  
AHARONY A, 1990, FRACTALS PHYSICS ESS
[2]   GROWTH PROBABILITY-DISTRIBUTION IN KINETIC AGGREGATION PROCESSES [J].
AMITRANO, C ;
CONIGLIO, A ;
DILIBERTO, F .
PHYSICAL REVIEW LETTERS, 1986, 57 (08) :1016-1019
[3]  
[Anonymous], RANDOM FLUCTUATIONS
[4]  
BADII R, 1985, J STAT PHYS, V40, P725, DOI 10.1007/BF01009897
[5]   EXPERIMENTAL DEMONSTRATION OF THE ROLE OF ANISOTROPY IN INTERFACIAL PATTERN-FORMATION [J].
BENJACOB, E ;
GODBEY, R ;
GOLDENFELD, ND ;
KOPLIK, J ;
LEVINE, H ;
MUELLER, T ;
SANDER, LM .
PHYSICAL REVIEW LETTERS, 1985, 55 (12) :1315-1318
[6]   CHARACTERIZATION OF INTERMITTENCY IN CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (12) :2157-2165
[7]   ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3521-3531
[8]   RESISTANCE FLUCTUATIONS IN RANDOMLY DILUTED NETWORKS [J].
BLUMENFELD, R ;
MEIR, Y ;
AHARONY, A ;
HARRIS, AB .
PHYSICAL REVIEW B, 1987, 35 (07) :3524-3535
[9]   BREAKDOWN OF MULTIFRACTAL BEHAVIOR IN DIFFUSION-LIMITED AGGREGATES [J].
BLUMENFELD, R ;
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1989, 62 (25) :2977-2980
[10]   INFINITE SET OF EXPONENTS DESCRIBING PHYSICS ON FRACTAL NETWORKS [J].
BLUMENFELD, R ;
MEIR, Y ;
HARRIS, AB ;
AHARONY, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (13) :L791-L796