Synchronization of networks of chaotic oscillators: Structural and dynamical datasets

被引:12
|
作者
Sevilla-Escoboza, Ricardo [1 ]
Buldu, Javier M. [2 ,3 ,4 ]
机构
[1] Univ Guadalajara, Ctr Univ Lagos, Guadalajara 47460, Jalisco, Mexico
[2] Univ Rey Juan Carlos, Complex Syst Grp, Madrid 28933, Spain
[3] Univ Rey Juan Carlos, GISC, Madrid 28933, Spain
[4] UPM, Ctr Biomed Technol, Madrid 28223, Spain
来源
DATA IN BRIEF | 2016年 / 7卷
关键词
Nonlinear dynamics; Complex networks; Synchronization;
D O I
10.1016/j.dib.2016.03.097
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We provide the topological structure of a series of N=28 Rossler chaotic oscillators diffusively coupled through one of its variables. The dynamics of the y variable describing the evolution of the individual nodes of the network are given for a wide range of coupling strengths. Datasets capture the transition from the unsynchronized behavior to the synchronized one, as a function of the coupling strength between oscillators. The fact that both the underlying topology of the system and the dynamics of the nodes are given together makes this dataset a suitable candidate to evaluate the interplay between functional and structural networks and serve as a benchmark to quantify the ability of a given algorithm to extract the structural network of connections from the observation of the dynamics of the nodes. At the same time, it is possible to use the dataset to analyze the different dynamical properties (randomness, complexity, reproducibility, etc.) of an ensemble of oscillators as a function of the coupling strength. (C) 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license.
引用
收藏
页码:1185 / 1189
页数:5
相关论文
共 50 条
  • [1] Projective synchronization in chaotic dynamical networks
    Liu Jie
    Lu Jun an
    Tang Qiang
    ICICIC 2006: FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING, INFORMATION AND CONTROL, VOL 1, PROCEEDINGS, 2006, : 729 - +
  • [2] Synchronization in multiplex networks of chaotic oscillators with frequency mismatch
    Shepelev, I. A.
    Vadivasova, T. E.
    CHAOS SOLITONS & FRACTALS, 2021, 147
  • [3] Explosive synchronization of complex networks with different chaotic oscillators
    赵军产
    Chinese Physics B, 2013, 22 (06) : 261 - 265
  • [4] Explosive synchronization of complex networks with different chaotic oscillators
    Zhao Jun-Chan
    CHINESE PHYSICS B, 2013, 22 (06)
  • [5] Synchronization of chaotic oscillators
    Trzaska, Zdzislaw
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (11): : 76 - 79
  • [6] Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators
    Kesheng Xu
    Jean Paul Maidana
    Samy Castro
    Patricio Orio
    Scientific Reports, 8
  • [7] Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators
    Xu, Kesheng
    Maidana, Jean Paul
    Castro, Samy
    Orio, Patricio
    SCIENTIFIC REPORTS, 2018, 8
  • [8] Structural Analysis of Synchronization in Networks of Linear Oscillators
    Tuna, S. Emre
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (07) : 3537 - 3544
  • [9] Phase synchronization in small-world networks of chaotic oscillators
    Li, CG
    Chen, GR
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 73 - 79
  • [10] Dynamical hysteresis and spatial synchronization in coupled non-identical chaotic oscillators
    Awadhesh Prasad
    Leon D. Iasemidis
    Shivkumar Sabesan
    Kostas Tsakalis
    Pramana, 2005, 64 : 513 - 523