Proposed methods in estimating the ridge regression parameter in Poisson regression model

被引:38
作者
Alanaz, Mazin M. [1 ]
Algamal, Zakariya Yahya [2 ]
机构
[1] Univ Mosul, Dept Operat Res & Intelligence Tech, Mosul, Iraq
[2] Univ Mosul, Dept Stat & Informat, Mosul, Iraq
关键词
Multicollinearity; ridge estimator; Poisson regression model; shrinkage; Monte Carlo simulation;
D O I
10.1285/i20705948v11n2p506
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Poisson regression model is considered as an important model among the linear logarithm models. It is usually used to model the count dependent variable. However, as in linear regression model, the multicollinearity problem may be present leading to negatively affect the model parameter estimation. In this study, several methods are proposed to estimate the ridge parameter. Monte-Carlo simulation studies with different factors were conducted to evaluate the performance of the used estimators. The results demonstrate the better performance of the proposed estimator compared to other used estimators in terms of mean squared error (MSE).
引用
收藏
页码:506 / 515
页数:10
相关论文
共 14 条
[1]   DIAGNOSTIC IN POISSON REGRESSION MODELS [J].
Algamal, Zakariya Y. .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2012, 5 (02) :178-186
[2]   Developing a ridge estimator for the gamma regression model [J].
Algamal, Zakariya Yahya .
JOURNAL OF CHEMOMETRICS, 2018, 32 (10)
[3]   Shrinkage estimators for gamma regression model [J].
Algamal, Zakariya Yahya .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (01) :253-268
[4]   Penalized Poisson Regression Model using adaptive modified Elastic Net Penalty [J].
Algamal, Zakariya Yahya ;
Lee, Muhammad Hisyam .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2015, 8 (02) :236-245
[5]  
Asar Y., 2017, IRANIAN J SCI TECH A
[6]  
Asar Y, 2014, HACET J MATH STAT, V43, P827
[7]  
Bhat S, 2016, PAK J STAT OPER RES, V12, P317
[8]  
Cameron A.C., 2013, REGRESSION ANAL COUN, V53
[9]  
De Jong P., 2008, GEN LINEAR MODELS IN, V10
[10]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&