Realizability of the H-k-Distance Functions by Homology Classes of Path Spaces

被引:0
作者
Ershov, Yu. V. [1 ]
Yakovlev, E. I. [1 ]
机构
[1] Nizhnii Novgorod State Univ, Pr Gagarina 23, Nizhnii Novgorod 603950, Russia
基金
俄罗斯基础研究基金会;
关键词
Riemannian manifold; path space; distance functions; multivalued functional; extremal;
D O I
10.3103/S1066369X10050038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In previous papers, we have constructed and studied mappings d(k) : M x M -> R called the Hk- distance functions. The main result of this paper is a theorem on realizability of the generalized distances d(k)( v, w), v, w is an element of M, by critical values of the length functional L : Omega( M, v, w). R generated by nontrivial homology classes of the space Omega( M, v, w) of paths joining the points v and w.
引用
收藏
页码:15 / 20
页数:6
相关论文
共 5 条
[1]  
Ershov Yu. V., 2008, SIB MAT ZH, V49, P87
[2]  
Ershov Yu. V., 2006, VESTN NIZHNI NOVGORO, P29
[3]  
Lyusternik L. A., 1946, USP MAT NAUK, V1, P30
[4]  
Postnikov M.M., 1971, INTRO MORSE THEORY
[5]  
Yakovlev E. I., 1996, FUNKTSIONAL ANAL PRI, V30, P89