THE EXPECTED EXTREMES IN A DELAUNAY TRIANGULATION

被引:26
作者
Bern, Marshall [1 ]
Eppstein, David [2 ]
Yao, Frances [1 ]
机构
[1] Xerox Palo Alto Res Ctr, Palo Alto, CA 94304 USA
[2] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92717 USA
关键词
Computational geometry; Delaunay triangulation; probabilistic analysis;
D O I
10.1142/S0218195991000074
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give an expected-case analysis of Delaunay triangulations. To avoid edge effects we consider a unit-intensity Poisson process in Euclidean d-space, and then limit attention to the portion of the triangulation within a cube of side n(1/d). For d equal to two, we calculate the expected maximum edge length, the expected minimum and maximum angles, and the average aspect ratio of a triangle. We also show that in any fixed dimension the expected maximum vertex degree is Theta(log n/ log log n). Altogether our results provide some measure of the suitability of the Delaunay triangulation for certain applications, such as interpolation and mesh generation.
引用
收藏
页码:79 / 91
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 1987, EATCS MONOGRAPHS THE
[2]  
Bern M., 1990, J COMPUT SYST SCI, V48, P231
[3]  
CRAIN IK, 1972, SEARCH, V3, P220
[4]   THE EXPECTED LENGTH OF THE LONGEST PROBE SEQUENCE FOR BUCKET SEARCHING WHEN THE DISTRIBUTION IS NOT UNIFORM [J].
DEVROYE, L .
JOURNAL OF ALGORITHMS, 1985, 6 (01) :1-9
[5]  
DOBKIN DP, 1987, P 31 IEEE S FDN COMP, P20
[6]  
Dwyer R. A., 1989, Proceedings of the Fifth Annual Symposium on Computational Geometry, P326, DOI 10.1145/73833.73869
[7]   EXPECTED LENGTH OF THE LONGEST PROBE SEQUENCE IN HASH CODE SEARCHING [J].
GONNET, GH .
JOURNAL OF THE ACM, 1981, 28 (02) :289-304
[8]  
KARP R, 1985, TRAVELING SALESMAN P
[9]   2 ALGORITHMS FOR CONSTRUCTING A DELAUNAY TRIANGULATION [J].
LEE, DT ;
SCHACHTER, BJ .
INTERNATIONAL JOURNAL OF COMPUTER & INFORMATION SCIENCES, 1980, 9 (03) :219-242
[10]  
MILES R E, 1970, Mathematical Biosciences, V6, P85, DOI 10.1016/0025-5564(70)90061-1