Cryptographic properties of monotone Boolean functions

被引:7
作者
Carlet, Claude [1 ]
Joyner, David [2 ]
Stanica, Pantelimon [3 ]
Tang, Deng [1 ]
机构
[1] Univ Paris 08, Dept Math, LAGA, St Denis 02, France
[2] US Naval Acad, Dept Math, Annapolis, MD 21402 USA
[3] Naval Postgrad Sch, Dept Appl Math, Monterey, CA 93943 USA
关键词
Boolean functions; bent and monotone functions; Walsh-Hadamard spectrum; algebraic immunity;
D O I
10.1515/jmc-2014-0030
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove various results on monotone Boolean functions. In particular, we prove a conjecture proposed recently, stating that there are no monotone bent Boolean functions. Further, we give an upper bound on the nonlinearity of monotone functions in odd dimension, we describe the Walsh-Hadamard spectrum and investigate some other cryptographic properties of monotone Boolean functions.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 16 条
[1]  
Carlet C., 1994, Advances in Cryptology - EUROCRYPT '93. Workshop on the Theory and Application of Cryptographic Techniques Proceedings, P77
[2]  
Carlet C., 2010, BOOLEAN MODELS METHO, P398, DOI DOI 10.1017/CBO9780511780448.012
[3]  
Carlet C., 2010, BOOLEAN MODELS METHO, DOI [DOI 10.1017/CBO9780511780448.011, 10.1017/CBO9780511780448.011]
[4]  
Celerier C., 2012, TBILISI MATH J, V5, P19
[5]  
Courtois NT, 2003, LECT NOTES COMPUT SC, V2656, P345
[6]  
Crama Y., 2011, ENCY MATH ITS APPL, V142
[7]  
Cusick TW, 2009, CRYPTOGRAPHIC BOOLEAN FUNCTIONS AND APPLICATIONS, P1
[8]   Basic theory in construction of Boolean functions with maximum possible annihilator immunity [J].
Dalai, Deepak Kumar ;
Maitra, Subhamoy ;
Sarkar, Sumanta .
DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (01) :41-58
[9]  
DILLON JF, 1975, P 6 SE C COMB GRAPH, P237
[10]  
Dobbertin H., 1995, Fast Software Encryption. Second International Workshop. Proceedings, P61