ON THE TRACE INEQUALITIES FOR HARDY-SOBOLEV FUNCTIONS IN THE UNIT BALL OF C-N

被引:13
作者
COHN, WS
VERBITSKY, IE
机构
关键词
D O I
10.1512/iumj.1994.43.43047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize ''invariant measures'' on the spheres in C-n for which the trace inequality, integral s(M(alpha)F)(p) d mu less than or equal to C parallel to F parallel to(Hp beta),(p) holds for holomorphic functions F in the Hardy-Sobolev spaces H-beta(p) where 1 < p < infinity, and M(alpha) is the admissible maximal function. In contrast to the known imbedding theorems for Euclidean Sobolev spaces, we obtain characterizations that distinguish the cases 1 < p less than or equal to 2 and 2 < p < infinity. Applications to exceptional sets are also given.
引用
收藏
页码:1079 / 1097
页数:19
相关论文
共 19 条
[1]  
Adams DR., 1995, FUNCTION SPACES POTE
[2]  
ADAMS DR, 1986, CLASSIFICATION PROBL
[3]  
AHERN P, 1988, MICH MATH J, V35, P29
[4]   EXCEPTIONAL SETS FOR HARDY SOBOLEV FUNCTIONS PARA-GREATER-THAN 1 [J].
AHERN, P ;
COHN, W .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (02) :417-453
[5]  
Ahern P., 1988, REV MAT IBEROAM, V4, P123, DOI 10.4171/RMI/66
[7]  
COHN WS, NONLINEAR POTENTIAL
[8]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[9]   THIN SETS IN NONLINEAR POTENTIAL-THEORY [J].
HEDBERG, LI ;
WOLFF, TH .
ANNALES DE L INSTITUT FOURIER, 1983, 33 (04) :161-187
[10]  
Jawerth B., 1990, CONT MATH, V107, P71, DOI DOI 10.1090/C0NM/107/1066471.MR1066471