Generalizations of basic and large submodules of QT AG-modules

被引:0
作者
Mehdi, Alveera [1 ]
Sikander, Fahad [1 ]
Naji, Sabah A. R. K. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
QTAG-modules; alpha-Basic submodule; Totally projective modules; alpha-Large submodules;
D O I
10.1007/s13370-013-0167-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A QT AG-module M over an associative ring R with unity is k-projective if H-k (M) = 0 and for a limit ordinal sigma, it is sigma-projective if there exists a submodule N bounded by sigma such that M/N is a direct sum of uniserial modules. M is totally projective if it is sigma-projective for all limit ordinals sigma. If alpha denotes the class of all QT AG-modules M such that M/H-beta (M) is totally projective for every ordinal beta < alpha, then these modules are called alpha-modules. Here we study these alpha-modules and generalize the concept of basic submodules as alpha-basic submodules. It is found that every alpha-module M contains an alpha-basic submodule and any two alpha-basic submodules of M are isomorphic. A submodule L of an alpha-module is alpha-large if M = L + B, for any alpha-basic submodule B of M. Many other interesting properties of alpha-basic, alpha-large and alpha-modules are studied.
引用
收藏
页码:975 / 986
页数:12
相关论文
共 11 条
  • [1] Fuchs L., 1970, INFINITE ABELIAN GRO, V1
  • [2] Fuchs L., 1973, INFINITE ABELIAN GRO
  • [3] Khan M.Z, 1979, TAMKANG J MATH, V10, P25
  • [4] Mehdi A., 1984, KYUNGPOOK MATH J, V24, P45
  • [5] Mehdi A., 2005, S E ASIAN J MATH MAT, V4, P1
  • [6] Mehdi A., 2002, S E ASIAN J MATH MAT, V1, P83
  • [7] Mehdi A., 2011, SCI SER A, V21, P55
  • [8] ULM-KAPLANSKY INVARIANTS FOR TAG-MODULES
    MEHRAN, HA
    SINGH, S
    [J]. COMMUNICATIONS IN ALGEBRA, 1985, 13 (02) : 355 - 373
  • [9] Naji S.A.R.K., 2010, THESIS
  • [10] Singh S., 1979, OSAKA J MATH, V16, P45