INEQUALITIES SIMILAR TO OPIAL'S INEQUALITY INVOLVING HIGHER ORDER DERIVATIVES

被引:0
作者
Pachpatte, B. G.
机构
[1] Aurangabad 431 001, (Maharashtra), Near Abhinay Talkies
来源
TAMKANG JOURNAL OF MATHEMATICS | 2005年 / 36卷 / 02期
关键词
Opial's inequality; higher order derivatives; Taylor expansion; Schwarz inequality; weighted versions;
D O I
10.5556/j.tkjm.36.2005.123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish some new inequalities similar to Opial's inequality involving functions and their higher order derivatives. The analysis used in the proofs is elementary and our results provide a new range of inequalities of this type.
引用
收藏
页码:111 / 117
页数:7
相关论文
共 50 条
[31]   HIGHER ORDER DERIVATIVES OF FUNCTIONS DEPENDING ON OTHER FUNCTIONS [J].
Chitescu, Ion .
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 57 (02) :105-115
[32]   Higher order logarithmic derivatives of matrices in the spectral norm [J].
Bhatia, R ;
Elsner, L .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (03) :662-668
[33]   Equidistribution of the Zeros of Higher Order Derivatives in Polynomial Dynamics [J].
Okuyama, Yusuke .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)
[34]   Equidistribution of the Zeros of Higher Order Derivatives in Polynomial Dynamics [J].
Yûsuke Okuyama .
The Journal of Geometric Analysis, 2024, 34
[35]   Higher-order derivatives in linear and quadratic programming [J].
Corradi, G .
COMPUTERS & OPERATIONS RESEARCH, 2001, 28 (03) :209-222
[36]   An alternative proof on higher order derivatives of a multilinear map [J].
Carvalho, Sonia .
LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (07) :1457-1464
[37]   A new theorem on higher order derivatives of Lyapunov functions [J].
Meigoli, Vahid ;
Nikravesh, Seyyed Kamaleddin Yadavar .
ISA TRANSACTIONS, 2009, 48 (02) :173-179
[38]   A Simple Procedure for Higher-Order Derivatives of the Inverse Function [J].
Itskov, M. ;
Dargazany, R. ;
Hoernes, K. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 :2037-2039
[39]   Notes on multivalent Bazilevie functions defined by higher order derivatives [J].
Aouf, Mohamed K. ;
Mostafa, Adela O. ;
Bulboaca, Teodor .
TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (02) :624-633
[40]   Finite differences for higher order derivatives of low resolution data [J].
Balakrishna, Subramaniam ;
Schultz, William W. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 :714-722