Ground water inputs and outputs of N were studied for a small ground water discharge swamp situated in a headwater drainage basin in southern Ontario, Canada. Darcy's equation with data for piezometers was used to measure inputs of shallow local ground water at the swamp margin and deep regional ground water beneath the swamp. Ground water flux was also quantified by measuring ground water discharge to the outlet stream draining the swamp in combination with a chemical mixing model to separate shallow and deep ground water components based on chloride differences. Estimates of shallow ground water flux determined by these two approaches agreed closely however, the piezometer data seriously underestimated the deep ground water input to the swamp. An average ground water input-output budget of total N (TN) total organic nitrogen (TON) ammonium (NH4+-N) and nitrate (NO3--N) was estimated for stream base flow periods which occurred on an average of 328 days each year during 1986-1990. Approximately 90% of the annual NO3--N input was contributed by shallow ground water at the swamp margin. Deep ground water represented about 65% of the total ground water input and a similar proportion of TON and NH4+-N inputs. Annual ground water NO3--N inputs and outputs were similar whereas NH4+-N retention was 4 kg ha-1 representing about 68% of annual ground water input. Annual TON inputs in ground water exceeded outputs by 7.7 kg ha (27%). The capacity of the swamp to regulate ground water N fluxes was influenced by the N chemistry of ground water inputs and the hydrologic pathways of transport within the swamp.