Computing the Burrows-Wheeler transform in place and in small space

被引:9
作者
Crochemore, Maxime [1 ]
Grossi, Roberto [2 ]
Karkkainen, Juha [3 ]
Landau, Gad M. [4 ,5 ]
机构
[1] Kings Coll London, London WC2R 2LS, England
[2] Univ Pisa, Dipartimento Informat, I-56100 Pisa, Italy
[3] Univ Helsinki, Dept Comp Sci, FIN-00014 Helsinki, Finland
[4] Univ Haifa, Dept Comp Sci, IL-31999 Haifa, Israel
[5] NYU Poly, Dept Comp Sci & Engn, Brooklyn, NY USA
基金
芬兰科学院; 以色列科学基金会; 美国国家科学基金会;
关键词
Burrows-Wheeler transform; In-place algorithms; String algorithms; Suffix sorting;
D O I
10.1016/j.jda.2015.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the problem of computing the Burrows-Wheeler Transform (BWT) using small additional space. Our in-place algorithm does not need the explicit storage for the suffix sort array and the output array, as typically required in previous work. It relies on the combinatorial properties of the BWT, and runs in O(n(2)) time in the comparison model using O(1) extra memory cells, apart from the array of n cells storing the n characters of the input text. We then discuss the time-space trade-off when O(k.sigma(k)) extra memory cells are allowed with sigma(k) distinct characters, providing an O((n(2)/k + n) log k)-time algorithm to obtain (and invert) the BWT. For example in real systems where the alphabet size is a constant, for any arbitrarily small c > 0, the BWT of a text of n bytes can be computed in O(n epsilon(-1) log n) time using just epsilon n extra bytes. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 52
页数:9
相关论文
共 50 条
  • [31] High performance OpenCL realization of Burrows-Wheeler transform on GPU
    Kartsev, Petr F.
    IWOCL'18: PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON OPENCL, 2018, : 83 - 84
  • [32] A four-stage algorithm for updating a Burrows-Wheeler transform
    Salson, M.
    Lecroq, T.
    Leonard, M.
    Mouchard, L.
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (43) : 4350 - 4359
  • [33] Genomic Phylogeny Using the MaxwellTM Classifier Based on Burrows-Wheeler Transform
    Demongeot, Jacques
    Gardes, Joel
    Maldivi, Christophe
    Boisset, Denis
    Boufama, Kenza
    Touzouti, Imene
    COMPUTATION, 2023, 11 (08)
  • [34] Multithread Multistring Burrows-Wheeler Transform and Longest Common Prefix Array
    Bonizzoni, Paola
    Della Vedova, Gianluca
    Pirola, Yuri
    Previtali, Marco
    Rizzi, Raffaella
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (09) : 948 - 961
  • [35] Parallel architecture for DNA sequence inexact matching with Burrows-Wheeler Transform
    Xin, Yao
    Liu, Benben
    Min, Biao
    Li, Will X. Y.
    Cheung, Ray C. C.
    Fong, Anthony S.
    Chan, Ting Fung
    MICROELECTRONICS JOURNAL, 2013, 44 (08) : 670 - 682
  • [36] A bijective variant of the Burrows-Wheeler Transform using V-order
    Daykin, Jacqueline W.
    Smyth, W. F.
    THEORETICAL COMPUTER SCIENCE, 2014, 531 : 77 - 89
  • [37] Parallel and Space-Efficient Construction of Burrows-Wheeler Transform and Suffix Array for Big Genome Data
    Liu, Yongchao
    Hankeln, Thomas
    Schmidt, Bertil
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2016, 13 (03) : 592 - 598
  • [38] Burrows-Wheeler compression: Principles and reflections
    Fenwick, Peter
    THEORETICAL COMPUTER SCIENCE, 2007, 387 (03) : 200 - 219
  • [39] Improvements to Burrows-Wheeler compression algorithm
    Deorowicz, S
    SOFTWARE-PRACTICE & EXPERIENCE, 2000, 30 (13) : 1465 - 1483
  • [40] Optimizing Burrows-Wheeler Transform-Based Sequence Alignment on Multicore Architectures
    Zhang, Jing
    Lin, Heshan
    Balaji, Pavan
    Feng, Wu-chun
    PROCEEDINGS OF THE 2013 13TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID 2013), 2013, : 377 - 384