Computing the Burrows-Wheeler transform in place and in small space

被引:9
|
作者
Crochemore, Maxime [1 ]
Grossi, Roberto [2 ]
Karkkainen, Juha [3 ]
Landau, Gad M. [4 ,5 ]
机构
[1] Kings Coll London, London WC2R 2LS, England
[2] Univ Pisa, Dipartimento Informat, I-56100 Pisa, Italy
[3] Univ Helsinki, Dept Comp Sci, FIN-00014 Helsinki, Finland
[4] Univ Haifa, Dept Comp Sci, IL-31999 Haifa, Israel
[5] NYU Poly, Dept Comp Sci & Engn, Brooklyn, NY USA
基金
芬兰科学院; 以色列科学基金会; 美国国家科学基金会;
关键词
Burrows-Wheeler transform; In-place algorithms; String algorithms; Suffix sorting;
D O I
10.1016/j.jda.2015.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the problem of computing the Burrows-Wheeler Transform (BWT) using small additional space. Our in-place algorithm does not need the explicit storage for the suffix sort array and the output array, as typically required in previous work. It relies on the combinatorial properties of the BWT, and runs in O(n(2)) time in the comparison model using O(1) extra memory cells, apart from the array of n cells storing the n characters of the input text. We then discuss the time-space trade-off when O(k.sigma(k)) extra memory cells are allowed with sigma(k) distinct characters, providing an O((n(2)/k + n) log k)-time algorithm to obtain (and invert) the BWT. For example in real systems where the alphabet size is a constant, for any arbitrarily small c > 0, the BWT of a text of n bytes can be computed in O(n epsilon(-1) log n) time using just epsilon n extra bytes. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 52
页数:9
相关论文
共 50 条
  • [21] Constructing and indexing the bijective and extended Burrows-Wheeler transform
    Bannai, Hideo
    Karkkainen, Juha
    Koppl, Dominik
    Piatkowski, Marcin
    INFORMATION AND COMPUTATION, 2024, 297
  • [22] Indexing Iris Images Using the Burrows-Wheeler Transform
    Gadde, Ravindra B.
    Adjeroh, Donald
    Ross, Arun
    2010 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2010,
  • [23] Parallel and Memory-efficient Burrows-Wheeler Transform
    Hayashi, Shinya
    Taura, Kenjiro
    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,
  • [24] Computing Burrows-Wheeler Similarity Distributions for String Collections
    Louza, Felipe A.
    Telles, Guilherme P.
    Gog, Simon
    Zhao, Liang
    STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2018, 2018, 11147 : 285 - 296
  • [25] Application of the Burrows-Wheeler Transform for Searching for Approximate Tandem Repeats
    Danek, Agnieszka
    Pokrzywa, Rafal
    Makalowska, Izabela
    Polanski, Andrzej
    PATTERN RECOGNITION IN BIOINFORMATICS, 2012, 7632 : 255 - 266
  • [26] Can burrows-Wheeler transform be replaced in chain code compression?
    Zalik, Borut
    Mongus, Domen
    Lukac, Niko
    Zalik, Krista Rizman
    INFORMATION SCIENCES, 2020, 525 (525) : 109 - 118
  • [27] A fast algorithm for Burrows-Wheeler Transform using suffix sorting
    Long, Bing-Jie (longbj1107@sinacom), 2015, Science Press (37): : 504 - 508
  • [28] Pipelined Processor for Image Compression through Burrows-Wheeler Transform
    Bafna, Chirag Babulal
    Berde, Ankit
    Jashnani, Karan
    Chaudhari, Monali
    Sharma, Simeran
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 383 - 387
  • [29] Parallel lossless data compression using the Burrows-Wheeler Transform
    Gilchrist, Jeff
    Cuhadar, Aysegul
    INTERNATIONAL JOURNAL OF WEB AND GRID SERVICES, 2008, 4 (01) : 117 - 135
  • [30] Efficient pattern matching in degenerate strings with the Burrows-Wheeler transform
    Daykin, J. W.
    Groult, R.
    Guesnet, Y.
    Lecroq, T.
    Lefebvre, A.
    Leonard, M.
    Mouchard, L.
    Prieur-Gaston, E.
    Watson, B.
    INFORMATION PROCESSING LETTERS, 2019, 147 : 82 - 87