Computing the Burrows-Wheeler transform in place and in small space

被引:9
|
作者
Crochemore, Maxime [1 ]
Grossi, Roberto [2 ]
Karkkainen, Juha [3 ]
Landau, Gad M. [4 ,5 ]
机构
[1] Kings Coll London, London WC2R 2LS, England
[2] Univ Pisa, Dipartimento Informat, I-56100 Pisa, Italy
[3] Univ Helsinki, Dept Comp Sci, FIN-00014 Helsinki, Finland
[4] Univ Haifa, Dept Comp Sci, IL-31999 Haifa, Israel
[5] NYU Poly, Dept Comp Sci & Engn, Brooklyn, NY USA
基金
芬兰科学院; 以色列科学基金会; 美国国家科学基金会;
关键词
Burrows-Wheeler transform; In-place algorithms; String algorithms; Suffix sorting;
D O I
10.1016/j.jda.2015.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the problem of computing the Burrows-Wheeler Transform (BWT) using small additional space. Our in-place algorithm does not need the explicit storage for the suffix sort array and the output array, as typically required in previous work. It relies on the combinatorial properties of the BWT, and runs in O(n(2)) time in the comparison model using O(1) extra memory cells, apart from the array of n cells storing the n characters of the input text. We then discuss the time-space trade-off when O(k.sigma(k)) extra memory cells are allowed with sigma(k) distinct characters, providing an O((n(2)/k + n) log k)-time algorithm to obtain (and invert) the BWT. For example in real systems where the alphabet size is a constant, for any arbitrarily small c > 0, the BWT of a text of n bytes can be computed in O(n epsilon(-1) log n) time using just epsilon n extra bytes. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 52
页数:9
相关论文
共 50 条
  • [1] Computing the Parameterized Burrows-Wheeler Transform Online
    Hashimoto, Daiki
    Hendrian, Diptaraiita
    Koppl, Dominik
    Yoshinaka, Ryo
    Shinohara, Ayumi
    STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2022, 2022, 13617 : 70 - 85
  • [2] An analysis of the Burrows-Wheeler Transform
    Manzini, G
    JOURNAL OF THE ACM, 2001, 48 (03) : 407 - 430
  • [3] Formalized Burrows-Wheeler Transform
    Cheung, Louis
    Moffat, Alistair
    Rizkallah, Christine
    PROCEEDINGS OF THE 14TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS, CPP 2025, 2025, : 187 - 197
  • [4] An extension of the Burrows-Wheeler transform
    Mantaci, S.
    Restivo, A.
    Rosone, G.
    Sciortino, M.
    THEORETICAL COMPUTER SCIENCE, 2007, 387 (03) : 298 - 312
  • [5] A High Performance Architecture for Computing Burrows-Wheeler Transform on FPGAs
    Cheema, Umer I.
    Khokhar, Ashfaq A.
    2013 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG), 2013,
  • [6] Computing the Burrows-Wheeler transform of a string and its reverse in parallel
    Ohlebusch, Enno
    Beller, Timo
    Abouelhoda, Mohamed I.
    JOURNAL OF DISCRETE ALGORITHMS, 2014, 25 : 21 - 33
  • [7] Bit Catastrophes for the Burrows-Wheeler Transform
    Giuliani, Sara
    Inenaga, Shunsuke
    Liptak, Zsuzsanna
    Romana, Giuseppe
    Sciortino, Marinella
    Urbina, Cristian
    THEORY OF COMPUTING SYSTEMS, 2025, 69 (02)
  • [8] Bit Catastrophes for the Burrows-Wheeler Transform
    Giuliani, Sara
    Inenaga, Shunsuke
    Liptak, Zsuzsanna
    Romana, Giuseppe
    Sciortino, Marinella
    Urbina, Cristian
    DEVELOPMENTS IN LANGUAGE THEORY, DLT 2023, 2023, 13911 : 86 - 99
  • [9] Burrows-Wheeler transform and Sturmian words
    Mantaci, S
    Restivo, A
    Sciortino, M
    INFORMATION PROCESSING LETTERS, 2003, 86 (05) : 241 - 246
  • [10] Resolution of the Burrows-Wheeler Transform Conjecture
    Kempa, Dominik
    Kociumaka, Tomasz
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 1002 - 1013