IDENTIFICATION OF THE 14.3.3-ZETA DOMAINS IMPORTANT FOR SELF-ASSOCIATION AND RAF BINDING

被引:91
作者
LUO, ZJ
ZHANG, XF
RAPP, U
AVRUCH, J
机构
[1] MASSACHUSETTS GEN HOSP EAST, DIABET RES LABS, BOSTON, MA 02129 USA
[2] MASSACHUSETTS GEN HOSP EAST, MED SERV, BOSTON, MA 02129 USA
[3] HARVARD UNIV, SCH MED, DEPT MED, BOSTON, MA 02129 USA
[4] UNIV WURZBURG, INST MED STRAHLENKUNDE & ZELLFORSCH, D-97078 WURZBURG, GERMANY
关键词
D O I
10.1074/jbc.270.40.23681
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The 14.3.3 zeta protein is a ubiquitous and abundant arachidonate-selective acyltransferase and putative phospholipase A(2), which self assembles into dimers and binds to c-Raf-1 and other polypeptides in vitro and in intact cells. The 14.3.3 polypeptides endogenous to Sf9 cells associate in situ with both active and inactive recombinant Raf and copurify at a fairly reproducible molar ratio that is probably 1. Purified baculoviral recombinant Raf, despite its preassociated 14.3.3 polypeptide, binds additional recombinant 14.3.3 zeta polypeptide in vitro, in a saturable and specific reaction, forming a complex that is resistant to 1 M LiCl. A two-hybrid analysis indicates that 14.3.3 zeta binds primarily to Raf noncatalytic sequences distinct from those that bind Ras-GTP, and in vitro 14.3.3 zeta binds to Raf without inhibiting the Ras-Raf association or Raf catalyzed MEK phosphorylation. Deletion analysis of 14.3.3 zeta (1-245) indicates that the 14.3.3 domain responsible for binding to Raf extends over the carboxyl-terminal 100 amino acids, whereas 14.3.3 dimerization is mediated by amino-terminal sequences. As with Ras, the 14.3.3 zeta polypeptide does not activate purified Raf directly in vitro. Moreover, expression of recombinant 14.3.3 zeta in COS cells beyond the substantial level of endogenous 14.3.3 pro tein does not alter endogenous Raf kinase, as judged by the activity of a cotransfected Erk-1 reporter. Coexpression of recombinant 14.3.3 with recombinant Myc-tagged Raf in COS cells does increase substantially the Myc-Raf kinase activity achieved during transient expression, which is attributable primarily to an increased level of Myc-Raf polypeptide, without alteration of Myc-Raf specific activity or the activation that occurs in response to epidermal growth factor or 12-O-tetradecanoylphorbol-13-acetate. Nevertheless, evidence that 14.3.3 actively participates in Raf activation in situ is provided by the finding that although full-length 14.3.3 zeta binds active Raf in situ, truncated versions of 14.3.3, some of which bind Raf polypeptide in situ nearly as well as full-length 14.3.3 zeta, are recovered in association only with inactive Raf polypeptides. Thus, 14.3.3 polypeptides bind tightly to one or more sites on c-Raf. Overexpression of 14.3.3 zeta enhances the expression of recombinant Raf, perhaps by stabilizing the Raf polypeptide. In addition, Raf polypeptides bound to truncated 14.3.3 polypeptides are unable to undergo activation in situ, indicating that 14.3.3 participates in the process of Raf activation by mechanisms that remain to be elucidated.
引用
收藏
页码:23681 / 23687
页数:7
相关论文
共 50 条
  • [41] The self-association and fibronectin-binding sites of fibulin-1 map to calcium-binding epidermal growth factor-like domains
    Tran, H
    VanDusen, WJ
    Argraves, WS
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (36) : 22600 - 22606
  • [42] Identification of insulin domains important for binding to and degradation by endosomal acidic insulinase
    Authier, F
    Danielsen, GM
    Kouach, M
    Briand, G
    Chauvet, G
    [J]. ENDOCRINOLOGY, 2001, 142 (01) : 276 - 289
  • [43] Protein self-association: Identification of association sites and related conformational changes by hydrogen exchange
    Gospodarek, Adrian
    Dumetz, Andre
    O'Connell, John
    Fernandez, Erik J.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [44] Reversible oligonucleosome self-association: Dependence on divalent cations and core histone tail domains
    Schwarz, PM
    Felthauser, A
    Fletcher, TM
    Hansen, JC
    [J]. BIOCHEMISTRY, 1996, 35 (13) : 4009 - 4015
  • [45] STRUCTURAL DOMAINS OF HIGH HYDROPHOBICITY DETERMINE THE SELF-ASSOCIATION OF HUMAN APOLIPOPROTEIN-A-IV
    WEINBERG, RB
    [J]. CLINICAL RESEARCH, 1986, 34 (02): : A353 - A353
  • [46] Self-association and mapping of interaction domains of helper component-proteinase of potato A potyvirus
    Guo, DY
    Merits, A
    Saarma, M
    [J]. JOURNAL OF GENERAL VIROLOGY, 1999, 80 : 1127 - 1131
  • [47] Determinants of intra versus intermolecular self-association within the regulatory domains of Rlk and Itk
    Laederach, A
    Cradic, KW
    Fulton, DB
    Andreotti, AH
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2003, 329 (05) : 1011 - 1020
  • [48] A B-Box 2 Surface Patch Important for TRIM5α Self-Association, Capsid Binding Avidity, and Retrovirus Restriction
    Diaz-Griffero, Felipe
    Qin, Xu-rong
    Hayashi, Fumiaki
    Kigawa, Takanori
    Finzi, Andres
    Sarnak, Zoe
    Lienlaf, Maritza
    Yokoyama, Shigeyuki
    Sodroski, Joseph
    [J]. JOURNAL OF VIROLOGY, 2009, 83 (20) : 10737 - 10751
  • [49] Self-assembled ionophores. Factors that control self-association and cation binding.
    Marlow, AL
    Cai, MM
    Davis, JT
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U579 - U579
  • [50] SELF-ASSOCIATION OF MELITTIN AND ITS BINDING TO LIPIDS - INTRINSIC FLUORESCENCE POLARIZATION STUDY
    FAUCON, JF
    DUFOURCQ, J
    LUSSAN, C
    [J]. FEBS LETTERS, 1979, 102 (01): : 187 - 190