ON THE DISTANCE DISTRIBUTION OF CODES

被引:38
作者
KALAI, G [1 ]
LINIAL, N [1 ]
机构
[1] HEBREW UNIV JERUSALEM,INST COMP SCI,IL-91904 JERUSALEM,ISRAEL
关键词
BINARY CODES; DISTANCE DISTRIBUTION; LINEAR PROGRAMMING BOUNDS;
D O I
10.1109/18.412711
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The distance distribution of a binary code C is the sequence (B-i)(i)(n)=0 defined as follows: Let B-i(w) be the number of codewords at distance i from the codeword w, and let B-i be the average of B-i(w) over all w in C. In this correspondence we study the distance distribution for codes of length n and minimal distance delta n, with delta > 0 fixed and n --> infinity. Our main aim is to relate the size of the code with the distribution of distances near the minimal distance.
引用
收藏
页码:1467 / 1472
页数:6
相关论文
共 14 条
  • [1] INEQUALITIES IN FOURIER-ANALYSIS
    BECKNER, W
    [J]. ANNALS OF MATHEMATICS, 1975, 102 (01) : 159 - 182
  • [2] THE INFLUENCE OF VARIABLES IN PRODUCT-SPACES
    BOURGAIN, J
    KAHN, J
    KALAI, G
    KATZNELSON, Y
    LINIAL, N
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1992, 77 (1-2) : 55 - 64
  • [3] DELSARTE P, 1972, PHILIPS RES REP, V27, P272
  • [4] Delsarte P., 1977, GEOMETRIAE DEDICATA, V6, P363, DOI DOI 10.1007/BF03187604
  • [5] DELSARTE P, 1973, PHILIPS RES REP S, V10
  • [6] GALLAGHER RG, 1968, INFORMATION THEORY R
  • [7] A COMPARISON OF SIGNALLING ALPHABETS
    GILBERT, EN
    [J]. BELL SYSTEM TECHNICAL JOURNAL, 1952, 31 (03): : 504 - 522
  • [8] Kabatyanskii G. A., 1978, Problems of Information Transmission, V14, P1
  • [9] Kahn J., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P68, DOI 10.1109/SFCS.1988.21923
  • [10] Macwilliams F. J., 1977, THEORY ERROR CORRECT