METRIC ADMISSIBILITY AND AGGLOMERATIVE CLUSTERING

被引:3
作者
CHEN, ZM [1 ]
VANNESS, JW [1 ]
机构
[1] UNIV TEXAS,PROGRAM MATH SCI,RICHARDSON,TX 75083
基金
美国国家科学基金会;
关键词
METRIC ADMISSIBLE CLUSTERING; AGGLOMERATIVE CLUSTERING; LANCE AND WILLIAMS ALGORITHM; ADMISSIBLE CLUSTERING;
D O I
10.1080/03610919408813202
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new clustering admissibility condition, metric admissibility, is introduced. This admissibility condition is important in clustering applications where it is desired that the cluster distances remain metric (satisfy the triangle inequality). The Lance and Williams infinite family of clustering algorithms is evaluated with respect to this admissibility condition. This family contains most of the commonly used agglomerative clustering algorithms. Necessary and sufficient conditions are given on the parameters of the Lance and Williams cluster distance function in order to assure metric admissibility of the corresponding algorithms.
引用
收藏
页码:833 / 845
页数:13
相关论文
共 8 条
[1]  
CHEN Z, 1993, 224 U TEX DALL MATH
[2]  
DUBIEN JL, 1979, CANADIAN J STAT, V7, P27
[3]   ADMISSIBLE CLUSTERING PROCEDURES [J].
FISHER, L ;
VANNESS, JW .
BIOMETRIKA, 1971, 58 (01) :91-&
[4]  
FISHER L, 1973, J AM STAT ASSOC, P603
[5]   A REVIEW OF HIERARCHICAL-CLASSIFICATION [J].
GORDON, AD .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1987, 150 :119-137
[6]  
HARTIGAN JA, 1981, J AM STAT ASSOC, V76, P388, DOI 10.2307/2287840
[7]   A GENERAL THEORY OF CLASSIFICATORY SORTING STRATEGIES .1. HIERARCHICAL SYSTEMS [J].
LANCE, GN ;
WILLIAMS, WT .
COMPUTER JOURNAL, 1967, 9 (04) :373-&
[8]   ADMISSIBLE CLUSTERING PROCEDURES [J].
VANNESS, JW .
BIOMETRIKA, 1973, 60 (02) :422-424