APPROXIMATION OF A PARABOLIC NONLINEAR EVOLUTION EQUATION BACKWARDS IN TIME

被引:27
作者
LONG, NT [1 ]
DINH, APN [1 ]
机构
[1] UNIV ORLEANS,MATH APPL & PHYS MATH LAB,URA 1803,F-45067 ORLEANS 2,FRANCE
关键词
D O I
10.1088/0266-5611/10/4/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse time problem for the non-linear heat equation in the form u(t) + Au = f(u), u(1) = X, where A is any non-negative. self adjoint operator. Using the strongly continuous contraction semi-group generated by A(beta) = -A(I + betaA)-1, beta > 0, we derive an estimation of the error on the whole interval (0,1] between u(t), solution of the initial problem, and upsilon(beta)(t), solution of the regularized problem: upsilon(beta)(t) + A(beta)upsilon3(t) = e-(1-t)betaAAbeta.f(upsilon(beta)), upsilon(beta)(1) = X.
引用
收藏
页码:905 / 914
页数:10
相关论文
共 4 条
[1]  
ANG DD, 1985, J MATH ANAL APPL, V111, P148
[2]   APPROXIMATION OF CERTAIN PARABOLIC EQUATIONS BACKWARD IN TIME BY SOBOLEV EQUATIONS [J].
EWING, RE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (02) :283-294
[3]   REGULARIZATION OF CLASS OF INCORRECT PROBLEMS IN EQUATIONS OF EVOLUTION [J].
GAJEWSKI, H ;
ZACHARIA.K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 38 (03) :784-&
[4]  
Lattes R., 1968, METHODE QUASIREVERSI