STRANGE TRIANGULAR MAPS OF THE SQUARE

被引:35
作者
FORTI, GL
PAGANONI, L
SMITAL, J
机构
[1] UNIV MILAN,DIPARTIMENTO MATEMAT,I-20133 MILAN,ITALY
[2] COMENIUS UNIV BRATISLAVA,INST MATH,BRATISLAVA 84215,SLOVAKIA
[3] SILESIAN UNIV,MATH INST,CR-74061 OPAVA,CZECH REPUBLIC
关键词
D O I
10.1017/S0004972700014222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that continuous triangular maps of the square I-2, F : (x,y) --> (f(x), g(x,y)), exhibit phenomena impossible in the one-dimensional case. In particular: (1) A triangular map F with zero topological entropy can have a minimal set containing an interval {a}xI, and can have recurrent points that are not uniformly recurrent; this solves two problems by S.F. Kolyada. (2) In the class of mappings satisfying Per(F) = Fix(F), there are nonchaotic maps with positive sequence topological entropy and chaotic maps with zero sequence topological entropy.
引用
收藏
页码:395 / 415
页数:21
相关论文
共 16 条
[1]   ON TOPOLOGICAL-ENTROPY OF TRIANGULAR MAPS OF THE SQUARE [J].
ALSEDA, L ;
KOLYADA, SF ;
SNOHA, L .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1993, 48 (01) :55-67
[2]  
BLOCK LS, 1992, LECTURES NOTES MATH, V1513
[3]   A CHARACTERIZATION OF OMEGA-LIMIT SETS OF MAPS OF THE INTERVAL WITH ZERO TOPOLOGICAL-ENTROPY [J].
BRUCKNER, AM ;
SMITAL, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 :7-19
[4]   CHARACTERIZATIONS OF WEAKLY CHAOTIC MAPS OF THE INTERVAL [J].
FEDORENKO, VV ;
SARKOVSKII, AN ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (01) :141-148
[5]  
FEDORENKO VV, 1991, ACTA MATH U COMENIAN, V50, P11
[6]   POSITIVE SEQUENCE TOPOLOGICAL-ENTROPY CHARACTERIZES CHAOTIC MAPS [J].
FRANZOVA, N ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) :1083-1086
[7]  
GOODMAN TNT, 1974, P LOND MATH SOC, V29, P331
[8]   A CHARACTERIZATION OF CHAOS [J].
JANKOVA, K ;
SMITAL, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (02) :283-292
[9]  
Kloeden P. E., 1979, Bulletin of the Australian Mathematical Society, V20, P171, DOI 10.1017/S0004972700010819
[10]   ON DYNAMICS OF TRIANGULAR MAPS OF THE SQUARE [J].
KOLYADA, SF .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 :749-768