INVERSE STURM-LIOUVILLE PROBLEM

被引:113
|
作者
HOCHSTADT, H [1 ]
机构
[1] POLYTECH INST BROOKLYN, BROOKLYN, NY 11201 USA
关键词
D O I
10.1002/cpa.3160260514
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:715 / 729
页数:15
相关论文
共 50 条
  • [31] Inverse Problem for the Quadratic Pencil of the Sturm-Liouville Equations
    Panakhov, Etibar S.
    Tas, Kezban
    Sat, Murat
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [32] Inverse Hochstadt problem for singular Sturm-Liouville equation
    Gasimov, ZM
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 1249 - 1254
  • [33] A NUMERICAL-METHOD FOR THE INVERSE STURM-LIOUVILLE PROBLEM
    PAINE, J
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (01): : 149 - 156
  • [34] To the solution of the inverse Sturm-Liouville problem on the real axis
    Zhura, N. A.
    Soldatov, A. P.
    DOKLADY MATHEMATICS, 2013, 88 (03) : 695 - 699
  • [35] Inverse nodal problem for the Sturm-Liouville operator with a weight
    ZHANG Ran
    Murat Sat
    YANG Chuan-fu
    AppliedMathematics:AJournalofChineseUniversities, 2020, 35 (02) : 193 - 202
  • [36] The interior inverse problem for the impulsive Sturm-Liouville equation
    Khalili, Y.
    Kadkhoda, N.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [37] An inverse three spectra problem for Sturm-Liouville operators
    Guo, Yongxia
    Wei, Guangsheng
    Yao, Ruoxia
    BOUNDARY VALUE PROBLEMS, 2018,
  • [38] Solvability of an inverse problem for discontinuous Sturm-Liouville operators
    Zhang, Ran
    Bondarenko, Natalia Pavlovna
    Yang, Chuan Fu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 124 - 139
  • [39] Weak and strong stability of the inverse Sturm-Liouville problem
    Guo, Yan
    Ma, Li-Jie
    Xu, Xiao-Chuan
    An, Qi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 15684 - 15705
  • [40] An inverse nodal problem for vectorial Sturm-Liouville equations
    Shen, CL
    Shieh, CT
    INVERSE PROBLEMS, 2000, 16 (02) : 349 - 356