MULTIPLE HOMOCLINIC ORBITS FOR AUTONOMOUS, SINGULAR POTENTIALS

被引:14
作者
BESSI, U
机构
[1] Scuola Normale Superiore, Pisa
关键词
D O I
10.1017/S0308210500028651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem [GRAPHICS] where u is-an-element-of R(n), n greater-than-or-equal-to 2, and V is-an-element-of C2(R(n)/e, R) is a potential having an absolute maximum at 0 and such that V(x) --> - infinity as x --> e. We prove that, under some conditions on V, this problem has at least n - 1 geometrically distinct solutions.
引用
收藏
页码:785 / 802
页数:18
相关论文
共 10 条
[1]  
Al'ber SI., 1970, RUSS MATH SURV, V25, P51, DOI [10.1070/RM1970v025n04ABEH001261, DOI 10.1070/RM1970V025N04ABEH001261]
[2]  
ALBER SI, 1964, SOV MATH DOKL, V5, P312
[3]  
BESSI U, 1991, REND SEMIN MAT U PAD, V85, P201
[4]  
GIANNONI F, 1988, ANN SCUOLA NORM SUP, V15, P467
[5]  
LIONS PL, 1982, SEMINAIRE GOULAOUIC
[6]  
Melnikov V. K., 1963, T MOSCOW MATH SOC, V12, P3
[7]   HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 114 :33-38
[8]   HOMOCLINIC ORBITS FOR A SINGULAR 2ND-ORDER HAMILTONIAN SYSTEM [J].
TANAKA, K .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (05) :427-438
[9]   A VARIATIONAL APPROACH TO HOMOCLINIC ORBITS IN HAMILTONIAN-SYSTEMS [J].
ZELATI, VC ;
EKELAND, I ;
SERE, E .
MATHEMATISCHE ANNALEN, 1990, 288 (01) :133-160
[10]  
ZELATI VC, 1991, J AM MATH SOC, V4, P693