GABOR TRANSFORM AND INTERMITTENCY IN TURBULENCE

被引:7
作者
KATSUYAMA, T
INOUE, M
NAGATA, K
机构
[1] Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-03
来源
PHYSICAL REVIEW E | 1995年 / 51卷 / 06期
关键词
D O I
10.1103/PhysRevE.51.5571
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Intermittency effects basically limited to the viscous subrange contaminate the Gabor filtering analysis in the inertial subrange. The contamination decreases with an increase in the quality factor of the filter, and the Gabor transform coefficients of turbulent velocity have scaling properties approaching the Kolmogorov scaling. In the limit of an infinitely long inertial range, there is no anomalous scaling, i.e., no non-Gaussianity. The wavelet transform coefficients of turbulent velocity and its structure functions follow probability rules depending on the scales extracted by analyzing wavelet functions. This anomalous scaling property is produced by the intermittency effects inherent in the viscous subrange. The structure functions cannot extract properties in a pure inertial subrange. © 1995 The American Physical Society.
引用
收藏
页码:5571 / 5576
页数:6
相关论文
共 14 条
[1]  
Anselmet F., Gagne Y., Hopfinger E.J., Antonia R.A., J. Fluid Mech., 140, (1984)
[2]  
Paladin G., Vulpiani A., Phys. Rep., 156, (1987)
[3]  
Grassberger P., Phys. Lett. A, 97, (1983)
[4]  
Benzi R., Paladin G., Parisi G., Vulpiani A., J. Phys. A, 17, (1984)
[5]  
Meneveau C., Sreenivasan K.R., Phys. Rev. Lett., 59, (1987)
[6]  
Katsuyama T., Horiuchi Y., Nagata K., Phys. Rev. E, 49, (1994)
[7]  
Frisch U., Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, Varenna Summer School LXXXVIII, (1985)
[8]  
Kolmogorov A.N., Dokl. Akad. Nauk. SSSR, 30, (1941)
[9]  
English translation is found in Proc. R. Soc. London, Ser. A, 434, (1991)
[10]  
Chui C.K., An Introduction to Wavelets, (1992)